Ralton J E, Milne K G, Güther M L, Field R A, Ferguson M A
Department of Biochemistry, University of Dundee, United Kingdom.
J Biol Chem. 1993 Nov 15;268(32):24183-9.
The inhibition of glycosylphosphatidylinositol anchor biosynthesis by mannosamine has been described previously in the procyclic forms of Trypanosoma brucei and in mammalian cells (Lisanti, M. P., Field, M. C., Caras, I. W. J., Menon, A. K., and Rodriguez-Boulan, E. (1991) EMBO J. 10, 1969-1977). A recent report has suggested that mannosamine exerts these effects by becoming incorporated into glycosylphosphatidylinositol anchor intermediates (Pan, Y-T., Kamitani, T., Bhuvaneswaran, C., Hallaq, Y., Warren, C. D., Yeh, E. T. H., and Elbein, A. D. (1992) J. Biol. Chem. 267, 21250-21255). In this paper we have analyzed the effects of mannosamine on glycosylphosphatidylinositol anchor and variant surface glycoprotein biosynthesis in the blood-stream form of T. brucei. Trypanosomes were biosynthetically labeled with [3H]mannosamine, and [3H]glucosamine in the presence of mannosamine, and the structures of the labeled glycolipids which accumulated were determined. The main glycolipid metabolite of mannosamine was shown to be ManN-Man-GlcN-PI. A trypanosome cell-free system preloaded with this compound was significantly impaired in its ability to synthesize glycosylphosphatidylinositol anchor intermediates beyond Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI. This compound is therefore proposed to be an inhibitor of the Dol-P-Man:Man alpha 1-6Man alpha 1-4GlcNa alpha 1-6PI alpha 1-2-mannosyltransferase of the GPI biosynthetic pathway. In living trypanosomes, 4 mM mannosamine had no effect on protein synthesis but reduced the rate of formation of mature glycosylphosphatidylinositol anchor precursors by 80%. This reduction in anchor precursor synthesis was insufficient to prevent the attachment of glycosylphosphatidylinositol anchors to newly synthesized variant surface glycoprotein molecules. These data suggest that the rate of anchor precursor synthesis in the bloodstream form of T. brucei, in contrast to mammalian cells and the procyclic form of T. brucei, is in large excess of the cellular requirements for protein anchorage.
甘露糖胺对糖基磷脂酰肌醇锚定生物合成的抑制作用此前已在布氏锥虫的前循环型和哺乳动物细胞中有所描述(利桑蒂,M.P.,菲尔德,M.C.,卡拉斯,I.W.J.,梅农,A.K.,以及罗德里格斯 - 布兰,E.(1991年)《欧洲分子生物学组织杂志》10,1969 - 1977)。最近的一份报告表明,甘露糖胺通过掺入糖基磷脂酰肌醇锚定中间体发挥这些作用(潘,Y - T.,上谷,T.,布瓦内斯瓦兰,C.,哈拉格,Y.,沃伦,C.D.,叶,E.T.H.,以及埃尔宾,A.D.(1992年)《生物化学杂志》267,21250 - 21255)。在本文中,我们分析了甘露糖胺对布氏锥虫血流型中糖基磷脂酰肌醇锚定和可变表面糖蛋白生物合成的影响。锥虫在存在甘露糖胺的情况下用[³H]甘露糖胺和[³H]葡糖胺进行生物合成标记,并确定积累的标记糖脂的结构。甘露糖胺的主要糖脂代谢产物显示为ManN - Man - GlcN - PI。预先加载该化合物的锥虫无细胞系统在合成超过Manα1 - 6Manα1 - 4GlcNα1 - 6PI的糖基磷脂酰肌醇锚定中间体的能力上显著受损。因此,该化合物被认为是GPI生物合成途径中Dol - P - Man:Manα1 - 6Manα1 - 4GlcNaα1 - 6PIα1 - 2 - 甘露糖基转移酶的抑制剂。在活的锥虫中,4 mM甘露糖胺对蛋白质合成没有影响,但使成熟糖基磷脂酰肌醇锚定前体的形成速率降低了80%。这种锚定前体合成的减少不足以阻止糖基磷脂酰肌醇锚定与新合成的可变表面糖蛋白分子的附着。这些数据表明,与哺乳动物细胞和布氏锥虫的前循环型相比,布氏锥虫血流型中锚定前体的合成速率大大超过了细胞对蛋白质锚定的需求。