Suppr超能文献

吞噬细胞衍生的氧化剂对生物材料的降解作用。

Degradation of biomaterials by phagocyte-derived oxidants.

作者信息

Sutherland K, Mahoney J R, Coury A J, Eaton J W

机构信息

Biomedical Engineering Program, University of Minnesota, Minneapolis 55455.

出版信息

J Clin Invest. 1993 Nov;92(5):2360-7. doi: 10.1172/JCI116841.

Abstract

Polymers used in implantable devices, although relatively unreactive, may degrade in vivo through unknown mechanisms. For example, polyetherurethane elastomers used as cardiac pacemaker lead insulation have developed surface defects after implantation. This phenomenon, termed "environmental stress cracking," requires intimate contact between polymer and host phagocytic cells, suggesting that phagocyte-generated oxidants might be involved. Indeed, brief exposure of polyetherurethane to activated human neutrophils, hypochlorous acid, or peroxynitrite produces modifications of the polymer similar to those found in vivo. Damage to the polymer appears to arise predominantly from oxidation of the urethane-aliphatic ester and aliphatic ether groups. There are substantial increases in the solid phase surface oxygen content of samples treated with hypochlorous acid, peroxynitrite or activated human neutrophils, resembling those observed in explanted polyetherurethane. Furthermore, both explanted and hypochlorous acid-treated polyetherurethane show marked reductions in polymer molecular weight. Interestingly, hypochlorous acid and peroxynitrite appear to attack polyetherurethane at different sites. Hypochlorous acid or activated neutrophils cause decreases in the urethane-aliphatic ester stretch peak relative to the aliphatic ether stretch peak (as determined by infrared spectroscopy) whereas peroxynitrite causes selective loss of the aliphatic ether. In vivo degradation may involve both hypohalous and nitric oxide-based oxidants because, after long-term implantation, both stretch peaks are diminished. These results suggest that in vivo destruction of implanted polyetherurethane involves attack by phagocyte-derived oxidants.

摘要

用于可植入设备的聚合物,尽管相对不活泼,但可能通过未知机制在体内降解。例如,用作心脏起搏器导线绝缘材料的聚醚聚氨酯弹性体在植入后出现了表面缺陷。这种现象被称为“环境应力开裂”,需要聚合物与宿主吞噬细胞密切接触,这表明吞噬细胞产生的氧化剂可能参与其中。事实上,将聚醚聚氨酯短暂暴露于活化的人类中性粒细胞、次氯酸或过氧亚硝酸盐中,会产生与体内发现的类似的聚合物改性。聚合物的损伤似乎主要源于聚氨酯-脂肪族酯和脂肪族醚基团的氧化。用次氯酸、过氧亚硝酸盐或活化的人类中性粒细胞处理的样品的固-相表面氧含量大幅增加,类似于在外植的聚醚聚氨酯中观察到的情况。此外,外植的和经次氯酸处理的聚醚聚氨酯的聚合物分子量均显著降低。有趣的是,次氯酸和过氧亚硝酸盐似乎在不同位点攻击聚醚聚氨酯。次氯酸或活化的中性粒细胞会导致相对于脂肪族醚伸缩峰而言聚氨酯-脂肪族酯伸缩峰降低(通过红外光谱测定),而过氧亚硝酸盐会导致脂肪族醚选择性损失。体内降解可能涉及次卤酸和基于一氧化氮的氧化剂,因为长期植入后,两个伸缩峰都会减弱。这些结果表明,植入的聚醚聚氨酯在体内的破坏涉及吞噬细胞衍生的氧化剂的攻击。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b26c/288418/2b3685fc633c/jcinvest00043-0284-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验