Schuster R, Phannavong B, Schröder C, Gundelfinger E D
ZMNH, Center for Molecular Neurobiology, University of Hamburg, Germany.
J Comp Neurol. 1993 Sep 8;335(2):149-62. doi: 10.1002/cne.903350202.
The distribution of two subunits of nicotinic acetylcholine receptors in the developing and the differentiated central nervous system of Drosophila melanogaster was studied. With subunit-specific antibodies raised against the ligand-binding alpha-like subunit ALS and the putative non-ligand-binding subunit ARD, we find both ALS-like and ARD-like immunoreactivity widely distributed in most neuropiles of the optic lobes, the protocerebrum, the deutocerebrum and the thoracic ganglion of the adult fly. With a single exception, namely in the lamina of the visual system, the antigens recognized by the two types of antibodies are colocalized. This observation is consistent with previous immunoprecipitation data indicating that the ALS and ARD proteins are integral components of the same hetero-oligomeric receptor that binds the nicotinic antagonist alpha-bungarotoxin with high affinity. During embryonic development ARD-like immunoreactivity is first detectable in approximately 10 hour old embryos. Both subunits are consistently detected in the central nervous system of the late embryo, the three larval stages, and all prepupal and pupal stages. During metamorphosis the optic stalk is transiently immunoreactive with anti-ARD, but not with anti-ALS antiserum. Although in larvae and adults, immunoreactivity with both types of antibodies is most abundant in synaptic regions, in embryos and pupae strong staining of cortical cell body layers is observed, in particular with anti-ARD antisera. As these developmental periods coincide with strong accumulation of ARD transcripts, the cell body staining may reflect newly synthesized and assembled receptors, while the functional ARD- and ALS-containing receptor may be destined for synapses.