HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland.
Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
Cell. 2024 May 9;187(10):2574-2594.e23. doi: 10.1016/j.cell.2024.03.016.
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
利用高分辨率电子显微镜观察神经系统,使我们能够重建突触连接组。然而,我们并不知道每个连接的突触信号(即,连接是兴奋性的还是抑制性的),这是由释放的递质所暗示的。我们证明,人工神经网络可以从电子显微镜照片预测突触前的递质类型:一个经过训练可以预测六种递质(乙酰胆碱、谷氨酸、GABA、血清素、多巴胺、章鱼胺)的网络,对单个突触的准确率为 87%,对神经元的准确率为 94%,对整个 D. melanogaster 大脑的已知细胞类型的准确率为 91%。我们可视化了用于预测的超微结构特征,发现了不同递质表型之间的细微但显著的差异。我们还分析了大脑中的递质分布,发现一起发育的神经元主要只表达一种快速作用的递质(乙酰胆碱、谷氨酸或 GABA)。我们希望我们公开提供的预测结果能够加速果蝇神经科学假说的产生。