Godzik A, Kolinski A, Skolnick J
Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.
J Comput Aided Mol Des. 1993 Aug;7(4):397-438. doi: 10.1007/BF02337559.
In the last two years, the use of simplified models has facilitated major progress in the globular protein folding problem, viz., the prediction of the three-dimensional (3D) structure of a globular protein from its amino acid sequence. A number of groups have addressed the inverse folding problem where one examines the compatibility of a given sequence with a given (and already determined) structure. A comparison of extant inverse protein-folding algorithms is presented, and methodologies for identifying sequences likely to adopt identical folding topologies, even when they lack sequence homology, are described. Extension to produce structural templates or fingerprints from idealized structures is discussed, and for eight-membered beta-barrel proteins, it is shown that idealized fingerprints constructed from simple topology diagrams can correctly identify sequences having the appropriate topology. Furthermore, this inverse folding algorithm is generalized to predict elements of supersecondary structure including beta-hairpins, helical hairpins and alpha/beta/alpha fragments. Then, we describe a very high coordination number lattice model that can predict the 3D structure of a number of globular proteins de novo; i.e. using just the amino acid sequence. Applications to sequences designed by DeGrado and co-workers [Biophys. J., 61 (1992) A265] predict folding intermediates, native states and relative stabilities in accord with experiment. The methodology has also been applied to the four-helix bundle designed by Richardson and co-workers [Science, 249 (1990) 884] and a redesigned monomeric version of a naturally occurring four-helix dimer, rop. Based on comparison to the rop dimer, the simulations predict conformations with rms values of 3-4 A from native. Furthermore, the de novo algorithms can assess the stability of the folds predicted from the inverse algorithm, while the inverse folding algorithms can assess the quality of the de novo models. Thus, the synergism of the de novo and inverse folding algorithm approaches provides a set of complementary tools that will facilitate further progress on the protein-folding problem.
在过去两年中,简化模型的使用推动了球状蛋白质折叠问题取得重大进展,即从氨基酸序列预测球状蛋白质的三维(3D)结构。许多研究团队探讨了反向折叠问题,也就是研究给定序列与给定(且已确定)结构的兼容性。本文对现有的反向蛋白质折叠算法进行了比较,并描述了用于识别即便缺乏序列同源性但可能采用相同折叠拓扑结构的序列的方法。文中讨论了从理想化结构生成结构模板或指纹的扩展方法,对于八元β桶蛋白,结果表明由简单拓扑图构建的理想化指纹能够正确识别具有适当拓扑结构的序列。此外,这种反向折叠算法被推广用于预测超二级结构元素,包括β发夹、螺旋发夹和α/β/α片段。然后,我们描述了一种具有非常高配位数的晶格模型,它能够从头预测多种球状蛋白质的3D结构,即仅使用氨基酸序列。将该模型应用于DeGrado及其同事设计的序列[《生物物理杂志》,61(1992年)A265],预测的折叠中间体、天然状态和相对稳定性与实验结果相符。该方法还被应用于Richardson及其同事设计的四螺旋束[《科学》,249(1990年)884]以及天然存在的四螺旋二聚体rop的重新设计单体版本。基于与rop二聚体的比较,模拟预测的构象与天然构象的均方根值为3 - 4埃。此外,从头算法可以评估由反向算法预测的折叠结构的稳定性,而反向折叠算法可以评估从头模型的质量。因此,从头算法和反向折叠算法方法的协同作用提供了一套互补工具,将有助于在蛋白质折叠问题上取得进一步进展。