Pillardy J, Czaplewski C, Liwo A, Lee J, Ripoll D R, Kaźmierkiewicz R, Oldziej S, Wedemeyer W J, Gibson K D, Arnautova Y A, Saunders J, Ye Y J, Scheraga H A
Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA.
Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2329-33. doi: 10.1073/pnas.041609598. Epub 2001 Feb 20.
Recent improvements of a hierarchical ab initio or de novo approach for predicting both alpha and beta structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic alpha-helical protein of 70 residues was predicted to within 4.3 A alpha-carbon (C(alpha)) rms deviation (rmsd) whereas, for other alpha-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 A C(alpha) rmsd. Whereas beta structures can now be predicted with the new procedure, the success rate for alpha/beta- and beta-proteins is lower than that for alpha-proteins at present. For the beta portions of alpha/beta structures, the C(alpha) rmsd's are less than 6.0 A for contiguous fragments of 30-40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a C(alpha) rmsd less than 6.0 A. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.
本文描述了一种用于预测蛋白质α和β结构的分层从头算或从头开始方法的最新改进。此过程中使用的联合残基能量函数包括多肽链自由能累积展开的多体相互作用,其相对权重通过Z分数优化确定。分层过程的关键初始阶段涉及通过构象空间退火(CSA)方法搜索构象空间,随后优化全原子模型。该过程在最近一次蛋白质结构预测的盲测(CASP4)中进行了评估。目标蛋白质(大小从70到244个残基不等)最终得到的最低能量结构在许多方面与实验结构相符。一个70个残基的环状α螺旋蛋白质的整个实验结构被预测到α碳原子(Cα)均方根偏差(rmsd)在4.3 Å以内,而对于其他α螺旋蛋白质,大约60个残基的片段被预测到Cα rmsd在6.0 Å以内。虽然现在可以用新方法预测β结构,但目前α/β和β蛋白质的成功率低于α蛋白质。对于α/β结构的β部分,30 - 40个残基的连续片段的Cα rmsd小于6.0 Å;对于一个目标,三个片段(分别长度为10、23和28个残基)形成了三级结构的一个紧密部分,其Cα rmsd小于6.0 Å。总体而言,这些结果是朝着仅从氨基酸序列从头预测蛋白质结构迈出的重要一步。