Carling R W, Leeson P D, Moore K W, Smith J D, Moyes C R, Mawer I M, Thomas S, Chan T, Baker R, Foster A C
Department of Medicinal Chemistry, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, U.K.
J Med Chem. 1993 Oct 29;36(22):3397-408. doi: 10.1021/jm00074a021.
3,4-Dihydro-2(1H)-quinolones, evolved from 2-carboxy-1,2,3,4,- tetrahydroquinolines and 3-carboxy-4-hydroxy-2(1H)-quinolones, have been synthesized and evaluated in vitro for antagonist activity at the glycine site on the NMDA receptor and for AMPA [(RS)-alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid] antagonist activity. Generally poor potency at the glycine site is observed when a variety of electron-withdrawing substituents are attached to the 3-position of 3,4-dihydro-2(1H)-quinolones. The analogues 5-9 (IC50 values > 100 microM, Table I) exist largely in the 3,4-dipseudoaxial conformation (as evidenced by 1H NMR spectra), whereas the 3-cyano derivative (10, IC50 = 12.0 microM) has a relatively high population of the 3-pseudoequatorial conformer. The 3-nitro analogue (4, IC50 = 1.32 microM) has a pKa approximately 5 and thus exists at physiological pH as an anion with the nitro group planar to the quinolone ring. The general requirement of acidity for high affinity binding at the glycine/NMDA site is supported with the good activity of the other 3-nitro derivatives (13-21), all of which are deprotonated at physiological pH. The 3-nitro-3,4-dihydro-2(1H)-quinolones and 2-carboxy-1,2,3,4-tetrahydroquinolines show quite different structure-activity relationships at the 4-position. The unselective excitatory amino acid activity of 21 is comparable with 6,7-dichloro-quinoxaline-2,3-dione and 6,7-dichloroquinoxalic acid and this suggests similarities in their modes of binding to excitatory amino acid receptors. The broad spectrum excitatory amino acid antagonist activity of the 4-unsubstituted analogue 21 (KbNMDA = 6.7 microM, KbAMPA = 9.2 microM) and the glycine/NMDA selectivity of the other 3-nitro derivatives allows the proposal of a model for AMPA receptor binding which differs from the glycine binding pharmacophore in that there is bulk intolerance adjacent to the 4-position. Compound 21 (L-698,544) is active (ED50 = 13.2 mg/kg) in the DBA/2 mouse anticonvulsant model and is the most potent combined glycine/NMDA-AMPA antagonist yet reported, in vivo, and may prove to be a useful pharmacological tool.
由2-羧基-1,2,3,4-四氢喹啉和3-羧基-4-羟基-2(1H)-喹啉衍生而来的3,4-二氢-2(1H)-喹诺酮类化合物已被合成,并在体外评估了其对NMDA受体甘氨酸位点的拮抗活性以及对AMPA[(RS)-α-氨基-3-羟基-5-甲基-4-异恶唑丙酸]的拮抗活性。当各种吸电子取代基连接到3,4-二氢-2(1H)-喹诺酮的3-位时,通常在甘氨酸位点观察到较差的活性。类似物5-9(IC50值>100μM,表I)主要以3,4-二假轴向构象存在(1H NMR光谱证明),而3-氰基衍生物(10,IC50 = 12.0μM)具有相对较高比例的3-假赤道构象体。3-硝基类似物(4,IC50 = 1.32μM)的pKa约为5,因此在生理pH下以阴离子形式存在,硝基与喹诺酮环平面。其他3-硝基衍生物(13-21)的良好活性支持了在甘氨酸/NMDA位点高亲和力结合对酸度的一般要求,所有这些衍生物在生理pH下都是去质子化的。3-硝基-3,4-二氢-2(1H)-喹诺酮类化合物和2-羧基-1,2,3,4-四氢喹啉在4-位显示出相当不同的构效关系。21的非选择性兴奋性氨基酸活性与6,7-二氯喹喔啉-2,3-二酮和6,7-二氯喹喔啉酸相当,这表明它们与兴奋性氨基酸受体的结合模式相似。4-未取代类似物21(KbNMDA = 6.7μM,KbAMPA = 9.2μM)的广谱兴奋性氨基酸拮抗活性以及其他3-硝基衍生物的甘氨酸/NMDA选择性使得能够提出一种AMPA受体结合模型,该模型与甘氨酸结合药效团不同,因为在4-位附近存在体积不容忍。化合物21(L-698,544)在DBA/2小鼠抗惊厥模型中具有活性(ED50 = 13.2mg/kg),是迄今为止体内报道的最有效的联合甘氨酸/NMDA-AMPA拮抗剂,可能被证明是一种有用的药理学工具。