Pellionisz A J, Ramos C F
NASA Ames Research Center, Moffett Field, CA 94035-1000.
Prog Brain Res. 1993;97:245-56. doi: 10.1016/s0079-6123(08)62283-9.
In one approach to modeling brain function, sensorimotor integration is described as geometrical mapping among coordinates of non-orthogonal frames that are intrinsic to the system; in such a case sensors represent (covariant) afferents and motor effectors represent (contravariant) motor efferents. The neuronal networks that perform such a function are viewed as general tensor transformations among different expressions and metric tensors determining the geometry of neural functional spaces. Although the non-orthogonality of a coordinate system does not impose a specific geometry on the space, this "Tensor Network Theory of brain function" allows for the possibility that the geometry is non-Euclidean. It is suggested that investigation of the non-Euclidean nature of the geometry is the key to understanding brain function and to interpreting neuronal network function. This paper outlines three contemporary applications of such a theoretical modeling approach. The first is the analysis and interpretation of multi-electrode recordings. The internal geometries of neural networks controlling external behavior of the skeletomuscle system is experimentally determinable using such multi-unit recordings. The second application of this geometrical approach to brain theory is modeling the control of posture and movement. A preliminary simulation study has been conducted with the aim of understanding the control of balance in a standing human. The model appears to unify postural control strategies that have previously been considered to be independent of each other. Third, this paper emphasizes the importance of the geometrical approach for the design and fabrication of neurocomputers that could be used in functional neuromuscular stimulation (FNS) for replacing lost motor control.
在一种对大脑功能进行建模的方法中,感觉运动整合被描述为系统内在的非正交坐标系之间的几何映射;在这种情况下,传感器代表(协变)传入神经,运动效应器代表(逆变)运动传出神经。执行这种功能的神经网络被视为不同表达式和决定神经功能空间几何形状的度量张量之间的一般张量变换。尽管坐标系的非正交性不会给空间强加特定的几何形状,但这种“大脑功能的张量网络理论”允许几何形状是非欧几里得的可能性。有人提出,研究几何形状的非欧几里得性质是理解大脑功能和解释神经网络功能的关键。本文概述了这种理论建模方法的三个当代应用。第一个是多电极记录的分析和解释。使用这种多单元记录可以通过实验确定控制骨骼肌系统外部行为的神经网络的内部几何形状。这种几何方法在大脑理论中的第二个应用是对姿势和运动控制进行建模。为了理解站立的人的平衡控制,已经进行了一项初步模拟研究。该模型似乎统一了以前被认为相互独立的姿势控制策略。第三,本文强调了几何方法对于设计和制造可用于功能性神经肌肉刺激(FNS)以替代失去的运动控制的神经计算机的重要性。