The effects of 12-O-tetradecanoyl 4 beta-phorbol 13-acetate (beta-TPA) on the inositol 1,4,5-trisphosphate (IP3) production, Ca2+ release from the intracellular Ca2+ stores and sensitization of contractile apparatus, induced by prostaglandin F2 alpha (PGF2 alpha) and U46619, a thromboxane A2-mimetic, were studied, using fura-2-loaded and -unloaded rat thoracic aortic strips. 2. Both eicosanoids had characteristic patterns of responses in Ca(2+)-free, 2 mM EGTA-containing solution (Ca(2+)-free solution). They induced transient increases in intracellular Ca2+ concentration ([Ca2+]i) without corresponding transient contraction, but produced delayed, sustained contraction, where [Ca2+]i was returned to the basal level. 3. Treatment with beta-TPA for 60 min reduced the eicosanoids-induced IP3 production, suggesting that the treatment inhibits PIP2 breakdown. 4. The treatment also attenuated [Ca2+]i transient induced by the eicosanoids, but not by caffeine (an IP3-independent releaser of stored Ca2+), in fura-2-loaded preparations incubated in Ca(2+)-free solution. 5. In contrast in the presence of beta-TPA, the sustained contractions evoked by the eicosanoids in Ca(2+)-free solution were potentiated, suggesting that the sites of actions of beta-TPA and the eicosanoids may differ from each other. 6. PGF2 alpha and U46619 utilize different and parallel signal transduction pathways to release Ca2+ by IP3 produced by PIP2 breakdown (beta-TPA-sensitive), and to increase the sensitivity of contractile apparatus, in which protein kinase C may not be involved (beta-TPA-insensitive).