Strum J C, Daniel L W
Department of Biochemistry, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1016.
J Biol Chem. 1993 Dec 5;268(34):25500-8.
The biosynthesis of choline plasmalogens was investigated in Madin-Darby canine kidney cells to determine the source of the vinyl ether linkage. 1-O-[3H] Alk-1'-enyl-2-lyso-sn-glycero-3-phosphoethanolamine was a better precursor than 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine for the synthesis of 1-O-[3H]alk-1'-enyl-2-acyl-sn-glycero-3-phosphocholine; this suggests that the vinyl ether linkage in choline phosphoglycerides originates from ethanolamine plasmalogens. The contribution of N-methylation and base exchange enzymes to choline plasmalogen biosynthesis was assessed using 1-O-[3H]alkenyl-2-lyso-sn-glycero-3-[32P]phosphoethanolamine. While 1-O-[3H]alkenyl-2-acyl-sn-glycero-3-phosphocholine was formed from this precursor, the 32P was lost indicating that N-methylation and base exchange enzymes do not contribute significantly to the synthesis of choline plasmalogens. The conversion of a phosphono analog of 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphoethanolamine, which is resistant to phospholipase D hydrolysis, to 1-O-[3H]alkenyl-2-acyl-sn-glycero-2-phosphocholine was observed demonstrating that phospholipase D is not required for choline plasmalogen biosynthesis. A Mg(2+)-dependent lysophospholipase C activity was detected in microsomes that actively hydrolyzed ether-linked lysophosphoglycerides as well as the lysophosphono analog. To assess the role of lysophospholipase C in shuttling 1-O-alk-1'-enyl-sn-glycerol (alkenylglycerol) from ethanolamine plasmalogens to choline plasmalogens, cells prelabeled with 1-O-[3H]alkenyl-2-lyso-sn-glycero-3-phosphoethanolamine were treated with 12-O-tetradecanoylphorbol-13-acetate. This resulted in the rapid deacylation of 1-O-[3H]alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine to 1-O-[3H]alkenyl-2-lyso-sn-glycero-3-phosphoethanolamine and the subsequent generation of 1-O-[3H]alkenylglycerol. A concomitant 2-3-fold increase in 1-O-[3H]alkenyl-2-acyl-sn-glycero-3-phosphocholine was observed. These studies suggest that the alkenyl linkage in choline phosphoglycerides may originate from 1-O-alkenyl-2-lyso-sn-glycero-3-phosphoethanolamine through an enzymatic pathway involving lysophospholipase C to generate alkenylglycerol that is subsequently converted to choline plasmalogens.
在麦迪逊-达比犬肾细胞中研究了胆碱缩醛磷脂的生物合成,以确定乙烯基醚键的来源。对于1-O-[³H]烷基-2-溶血-sn-甘油-3-磷酸胆碱的合成,1-O-[³H]烯基-1'-烯基-2-溶血-sn-甘油-3-磷酸乙醇胺是比1-O-[³H]烷基-2-溶血-sn-甘油-3-磷酸胆碱更好的前体;这表明胆碱磷酸甘油酯中的乙烯基醚键源自乙醇胺缩醛磷脂。使用1-O-[³H]烯基-2-溶血-sn-甘油-3-[³²P]磷酸乙醇胺评估了N-甲基化和碱基交换酶对胆碱缩醛磷脂生物合成的贡献。虽然由该前体形成了1-O-[³H]烯基-2-酰基-sn-甘油-3-磷酸胆碱,但³²P丢失了,这表明N-甲基化和碱基交换酶对胆碱缩醛磷脂的合成贡献不大。观察到1-O-[³H]烷基-2-溶血-sn-甘油-3-磷酸乙醇胺的膦酸类似物(对磷脂酶D水解具有抗性)转化为1-O-[³H]烯基-2-酰基-sn-甘油-2-磷酸胆碱,这表明胆碱缩醛磷脂生物合成不需要磷脂酶D。在微粒体中检测到一种Mg(²⁺)依赖性溶血磷脂酶C活性,其可积极水解醚键连接的溶血甘油磷脂以及溶血膦酸类似物。为了评估溶血磷脂酶C在将1-O-烯基-1'-烯基-sn-甘油(烯基甘油)从乙醇胺缩醛磷脂转运到胆碱缩醛磷脂中的作用,用12-O-十四烷酰佛波醇-13-乙酸酯处理预先用1-O-[³H]烯基-2-溶血-sn-甘油-3-磷酸乙醇胺标记的细胞。这导致1-O-[³H]烯基-2-酰基-sn-甘油-3-磷酸乙醇胺迅速脱酰基形成1-O-[³H]烯基-2-溶血-sn-甘油-3-磷酸乙醇胺,并随后生成1-O-[³H]烯基甘油。同时观察到1-O-[³H]烯基-2-酰基-sn-甘油-3-磷酸胆碱增加了2 - 3倍。这些研究表明,胆碱磷酸甘油酯中的烯基键可能通过涉及溶血磷脂酶C以生成烯基甘油的酶促途径源自1-O-烯基-2-溶血-sn-甘油-3-磷酸乙醇胺,随后烯基甘油转化为胆碱缩醛磷脂。