Knickle L C, Webb C D, House A A, Bend J R
Department of Pharmacology and Toxicology, University of Western Ontario, London, Canada.
J Pharmacol Exp Ther. 1993 Nov;267(2):758-64.
Guinea pig renal microsomes convert arachidonic acid to two classes of P450-dependent metabolites, epoxyeicosatrienoic acids (EET), and 16- through 20-hydroxyeicosatetraenoic acids [(16-20)-OH-AA)]. The rate of formation of these metabolites was not altered by beta-naphthoflavone induction, which increased P450 1A1-dependent 7-ethoxyresorufin O-deethylation activity approximately 100-fold. alpha-Naphthoflavone, which inhibits renal P450 1A1 in vitro, did not inhibit the formation of these metabolites in microsomes from induced animals. In induced animals, N-benzyl-1-aminobenzotriazole and N-alpha-methylbenzyl-1-aminobenzotriazole, administered i.v., inhibited microsomal 7-ethoxyresorufin O-deethylation activity by approximately 50% without inhibiting the formation of either class of arachidonic acid metabolites. In vitro these mechanism-based inhibitors inactivated 1A1 by > 90% without inhibiting EET or (16-20)-OH-AA formation. These data show that P450 1A1 does not bioactivate arachidonic acid to either (16-20)-OH-AA or EET in guinea pig kidney, and that N-benzyl-1-aminobenzotriazole and N-alpha-methylbenzyl-1-aminobenzotriazole selectively inactivate P450 1A1 in comparison to the P450 isozyme(s) that metabolize arachidonic acid in the kidney. In guinea pig liver beta-naphthoflavone treatment, which induces P450 1A1 and 1A2, increased the rate of the formation of (16-20)-OH-AA and EET and in vitro alpha-naphthoflavone inhibited the formation of these metabolites in induced hepatic microsomes by approximately 50 and approximately 35%, respectively. These data demonstrate that a beta-naphthoflavone-inducible isozyme, most likely 1A2, converts arachidonic acid to both (16-20)-OH-AA and EET in guinea pig liver.
豚鼠肾微粒体可将花生四烯酸转化为两类依赖细胞色素P450的代谢产物,即环氧二十碳三烯酸(EET)和16至20羟基二十碳四烯酸[(16 - 20)- OH - AA]。这些代谢产物的生成速率并未因β - 萘黄酮诱导而改变,β - 萘黄酮诱导可使细胞色素P450 1A1依赖的7 - 乙氧基异吩恶唑酮O - 脱乙基酶活性增加约100倍。α - 萘黄酮在体外可抑制肾细胞色素P450 1A1,但对诱导动物微粒体中这些代谢产物的生成并无抑制作用。在诱导动物中,静脉注射N - 苄基 - 1 - 氨基苯并三唑和N - α - 甲基苄基 - 1 - 氨基苯并三唑可使微粒体7 - 乙氧基异吩恶唑酮O - 脱乙基酶活性抑制约50%,但并不抑制任何一类花生四烯酸代谢产物的生成。在体外,这些基于机制的抑制剂可使1A1失活> 90%,但并不抑制EET或(16 - 20)- OH - AA的生成。这些数据表明,在豚鼠肾脏中,细胞色素P450 1A1不会将花生四烯酸生物激活为(16 - 20)- OH - AA或EET,并且与肾脏中代谢花生四烯酸的细胞色素P450同工酶相比,N - 苄基 - 1 - 氨基苯并三唑和N - α - 甲基苄基 - 1 - 氨基苯并三唑可选择性地使细胞色素P450 1A1失活。在豚鼠肝脏中,β - 萘黄酮处理可诱导细胞色素P450 1A1和1A2,增加(16 - 20)- OH - AA和EET生成速率,并且在体外,α - 萘黄酮可分别使诱导的肝微粒体中这些代谢产物的生成抑制约50%和约35%。这些数据表明,一种β - 萘黄酮可诱导的同工酶,很可能是1A2,可将豚鼠肝脏中的花生四烯酸转化为(16 - 20)- OH - AA和EET。