Mattingly J R, Iriarte A, Martinez-Carrion M
Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City 64110-2499.
J Biol Chem. 1993 Dec 15;268(35):26320-7.
When the precursor to mitochondrial aspartate aminotransferase (pmAspAT) is synthesized in a rabbit reticulocyte lysate translation system (RRL), its properties are quite unlike those of the purified protein (Mattingly, J.R., Jr., Youssef, J., Iriarte, A., and Martinez-Carrion, M. (1993) J. Biol. Chem. 268, 3925-3937). These results suggest that molecular chaperones present in RRL modulate the folding of pmAspAT. To investigate the structural basis for this, we have used protease resistance to monitor the extent of folding for several related AspATs after synthesis in RRL and in wheat germ extract (WGE). In addition to pmAspAT, the following proteins were examined: the mature form of pmAspAT (delta 2-28 pmAspAT), its cytosolic counterpart (cAspAT), a chimeric protein consisting of the presequence of pmAspAT attached to the amino terminus of cAspAT (pcAspAT), and a pmAspAT variant in which the presequence and the amino-terminal domain of the mature enzyme are deleted (delta 2-57 pmAspAT). In RRL, delta 2-28 pmAspAT folds somewhat faster than intact pmAspAT, whereas the truncated delta 2-57 pmAspAT is unable to fold. In contrast, cAspAT and pcAspAT both fold with extreme rapidity. After synthesis in WGE, pmAspAT and delta 2-28 pmAspAT never acquire a protease-resistant conformation, whereas the folding of cAspAT and pcAspAT still occurs rapidly. We conclude that the presequence has only a minor role in determining the folding rate of the pmAspAT mitochondrial precursor protein in RRL or WGE and has no influence on the folding of the homologous cAspAT. Rather, the primary sequence of the mature part of the protein seems to dictate whether or how molecular chaperones regulate folding events.
当线粒体天冬氨酸氨基转移酶前体(pmAspAT)在兔网织红细胞裂解物翻译系统(RRL)中合成时,其特性与纯化后的蛋白质截然不同(小马丁利,J.R.,优素福,J.,伊里亚尔特,A.,以及马丁内斯 - 卡里翁,M.(1993年)《生物化学杂志》268卷,3925 - 3937页)。这些结果表明,RRL中存在的分子伴侣调节pmAspAT的折叠。为了研究其结构基础,我们利用蛋白酶抗性来监测几种相关天冬氨酸氨基转移酶在RRL和小麦胚芽提取物(WGE)中合成后的折叠程度。除了pmAspAT,还检测了以下蛋白质:pmAspAT的成熟形式(δ2 - 28 pmAspAT)、其胞质对应物(cAspAT)、一种由pmAspAT的前导序列连接到cAspAT氨基末端组成的嵌合蛋白(pcAspAT),以及一种缺失成熟酶前导序列和氨基末端结构域的pmAspAT变体(δ2 - 57 pmAspAT)。在RRL中,δ2 - 28 pmAspAT的折叠速度比完整的pmAspAT稍快,而截短的δ2 - 57 pmAspAT无法折叠。相比之下,cAspAT和pcAspAT都能极快速地折叠。在WGE中合成后,pmAspAT和δ2 - 28 pmAspAT从未获得抗蛋白酶的构象,而cAspAT和pcAspAT的折叠仍然迅速发生。我们得出结论,前导序列在决定RRL或WGE中pmAspAT线粒体前体蛋白的折叠速率方面仅起次要作用,并且对同源cAspAT 的折叠没有影响。相反,蛋白质成熟部分的一级序列似乎决定了分子伴侣是否以及如何调节折叠事件。