Suppr超能文献

伊曲康唑对新型隐球菌中细胞色素P-450依赖性甾醇14α-去甲基化及3-酮类固醇还原的影响。

Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans.

作者信息

Vanden Bossche H, Marichal P, Le Jeune L, Coene M C, Gorrens J, Cools W

机构信息

Division of Medicinal Chemistry and Pharmacology, Janssen Research Foundation, Beerse, Belgium.

出版信息

Antimicrob Agents Chemother. 1993 Oct;37(10):2101-5. doi: 10.1128/AAC.37.10.2101.

Abstract

As in other pathogenic fungi, the major sterol synthesized by Cryptococcus neoformans var. neoformans is ergosterol. This yeast also shares with most pathogenic fungi a susceptibility of its cytochrome P-450-dependent ergosterol synthesis to nanomolar concentrations of itraconazole. Fifty percent inhibition of ergosterol synthesis was reached after 16 h of growth in the presence of 6.0 +/- 4.7 nM itraconazole, and complete inhibition was reached at approximately 100 nM itraconazole. This inhibition coincided with the accumulation of mainly eburicol and the 3-ketosteroid obtusifolione. The radioactivity incorporated from [14C]acetate in both compounds represents 64.2% +/- 12.9% of the radioactivity incorporated into the sterols plus squalene extracted from cells incubated in the presence of 10 nM itraconazole. The accumulation of obtusifolione as well as eburicol indicates that itraconazole inhibits not only the 14 alpha-demethylase but also (directly or indirectly) the NADPH-dependent 3-ketosteroid reductase, i.e., the enzyme catalyzing the last step in the demethylation at C-4. This latter inhibition obviates the synthesis of 4,4-demethylated 14 alpha-methylsterols that may function at least partly as surrogates of ergosterol. Eburicol and obtusifolione are unable to support cell growth, and the 3-ketosteroid has been shown to disturb membranes. The complete inhibition of ergosterol synthesis and the accumulation of the 4,4,14-trimethylsterol and of the 3-ketosteroid together with the absence of sterols, such as 14 alpha-methylfecosterol and lanosterol, which can partly fulfill some functions of ergosterol, are at the origin of the high activity of itraconazole against C. neoformans. Fifty percent inhibition of growth achieved after 16 h of incubation in the presence of 3.2 +/- 2.6 nM itraconazole.

摘要

与其他致病真菌一样,新型隐球菌变种新型隐球菌合成的主要甾醇是麦角甾醇。这种酵母还与大多数致病真菌一样,其细胞色素P - 450依赖性麦角甾醇合成对纳摩尔浓度的伊曲康唑敏感。在6.0±4.7 nM伊曲康唑存在下生长16小时后,麦角甾醇合成受到50%的抑制,在约100 nM伊曲康唑时达到完全抑制。这种抑制与主要是表甾醇和3 - 酮甾醇钝叶红素的积累同时发生。在两种化合物中,从[14C]乙酸掺入的放射性占在10 nM伊曲康唑存在下孵育的细胞中提取的甾醇加角鲨烯中掺入放射性的64.2%±12.9%。钝叶红素以及表甾醇的积累表明伊曲康唑不仅抑制14α-脱甲基酶,还(直接或间接)抑制NADPH依赖性3 - 酮甾醇还原酶,即催化C - 4去甲基化最后一步的酶。后一种抑制避免了4,4 - 去甲基化的14α-甲基甾醇的合成,这些甾醇可能至少部分地作为麦角甾醇的替代物发挥作用。表甾醇和钝叶红素不能支持细胞生长,并且已表明3 - 酮甾醇会干扰细胞膜。麦角甾醇合成的完全抑制以及4,4,14 - 三甲基甾醇和3 - 酮甾醇的积累,再加上缺乏可部分履行麦角甾醇某些功能的甾醇,如14α-甲基粪甾醇和羊毛甾醇,是伊曲康唑对新型隐球菌具有高活性的原因。在3.2±2.6 nM伊曲康唑存在下孵育16小时后,生长受到50%的抑制。

相似文献

2
Accumulation of 3-ketosteroids induced by itraconazole in azole-resistant clinical Candida albicans isolates.
Antimicrob Agents Chemother. 1999 Nov;43(11):2663-70. doi: 10.1128/AAC.43.11.2663.
3
Sterol 24-C-methyltransferase: an enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in Cryptococcus neoformans.
Arch Biochem Biophys. 2009 Jan 15;481(2):210-8. doi: 10.1016/j.abb.2008.11.003. Epub 2008 Nov 8.
4
Perturbation of sterol biosynthesis by itraconazole and ketoconazole in Leishmania mexicana mexicana infected macrophages.
Mol Biochem Parasitol. 1989 Mar 1;33(2):123-34. doi: 10.1016/0166-6851(89)90026-1.
5
Resistant P45051A1 activity in azole antifungal tolerant Cryptococcus neoformans from AIDS patients.
FEBS Lett. 1995 Jul 17;368(2):326-30. doi: 10.1016/0014-5793(95)00684-2.
6
Effects of three azole derivatives on the lipids of different strains of Cryptococcus neoformans.
Mycoses. 1995 May-Jun;38(5-6):183-9. doi: 10.1111/j.1439-0507.1995.tb00047.x.
7
Sterol composition of Cryptococcus neoformans in the presence and absence of fluconazole.
Antimicrob Agents Chemother. 1994 Sep;38(9):2029-33. doi: 10.1128/AAC.38.9.2029.
8
9
Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans.
Mol Microbiol. 2007 May;64(3):614-29. doi: 10.1111/j.1365-2958.2007.05676.x.

引用本文的文献

2
Revolutionising Neurological Therapeutics: Investigating Drug Repurposing Strategies.
CNS Neurol Disord Drug Targets. 2025;24(2):115-131. doi: 10.2174/0118715273329531240911075309.
3
In vitro synergistic antiviral activity of repurposed drugs against enterovirus 71.
Arch Virol. 2024 Jul 30;169(8):169. doi: 10.1007/s00705-024-06097-1.
5
Superficial Dermatophytosis across the World's Populations: Potential Benefits from Nanocarrier-Based Therapies and Rising Challenges.
ACS Omega. 2023 Aug 22;8(35):31575-31599. doi: 10.1021/acsomega.3c01988. eCollection 2023 Sep 5.
6
and Mutations Are Drivers of -Independent Pan-Triazole Resistance in an Aspergillus fumigatus Clinical Isolate.
Microbiol Spectr. 2023 Jun 15;11(3):e0518822. doi: 10.1128/spectrum.05188-22. Epub 2023 May 4.
8
Application of central composite design for the optimization of itraconazole loaded nail lacquer formulation.
3 Biotech. 2021 Jul;11(7):324. doi: 10.1007/s13205-021-02862-0. Epub 2021 Jun 11.
9
10
Synthesis and Biological Activity of Novel Zinc-Itraconazole Complexes in Protozoan Parasites and spp.
Antimicrob Agents Chemother. 2020 Apr 21;64(5). doi: 10.1128/AAC.01980-19.

本文引用的文献

1
The structural requirements of sterols for membrane function in Saccharomyces cerevisiae.
Arch Biochem Biophys. 1993 Feb 1;300(2):724-33. doi: 10.1006/abbi.1993.1100.
2
Correlation between molecular shape and hexagonal HII phase promoting ability of sterols.
FEBS Lett. 1982 Jun 21;143(1):133-6. doi: 10.1016/0014-5793(82)80289-5.
4
Multiple functions for sterols in Saccharomyces cerevisiae.
Biochim Biophys Acta. 1985 Dec 4;837(3):336-43. doi: 10.1016/0005-2760(85)90057-8.
6
Mode of action studies. Basis for the search of new antifungal drugs.
Ann N Y Acad Sci. 1988;544:191-207. doi: 10.1111/j.1749-6632.1988.tb40404.x.
7
Biochemical approaches to selective antifungal activity. Focus on azole antifungals.
Mycoses. 1989;32 Suppl 1:35-52. doi: 10.1111/j.1439-0507.1989.tb02293.x.
8
Perturbation of sterol biosynthesis by itraconazole and ketoconazole in Leishmania mexicana mexicana infected macrophages.
Mol Biochem Parasitol. 1989 Mar 1;33(2):123-34. doi: 10.1016/0166-6851(89)90026-1.
9
Molecular genetic studies on the mode of action of azole antifungal agents.
Biochem Soc Trans. 1991 Aug;19(3):796-8. doi: 10.1042/bst0190796.
10
Characterization of an azole-resistant Candida glabrata isolate.
Antimicrob Agents Chemother. 1992 Dec;36(12):2602-10. doi: 10.1128/AAC.36.12.2602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验