Suppr超能文献

Structural characterization of the trypsinized estrogen receptor.

作者信息

Fritsch M, Anderson I, Gorski J

机构信息

Department of Biochemistry, University of Wisconsin-Madison 53706-1569.

出版信息

Biochemistry. 1993 Dec 21;32(50):14000-8. doi: 10.1021/bi00213a033.

Abstract

Structural differences between the unoccupied and ligand-occupied rat uterine estrogen receptors (ERs) were investigated using partial proteolysis followed by immunoblotting, affinity labeling, and gel filtration chromatography. Trypsin digestion of the unoccupied ER at 4 degrees C resulted in retention of 70-80% of high-affinity [3H]estradiol binding. Only two fragments of the rat ER were detected after prolonged trypsin treatment of the unoccupied ER followed by affinity labeling with [3H]tamoxifen aziridine. One fragment represents the intact steroid binding domain (28 kDa), and the other fragment is about 10 kDa. The small 10-kDa fragment of the ER detected by denaturing gel electrophoresis is shown to be held in a large oligomeric complex in solution using gel filtration chromatography. This oligomeric complex probably represents the steroid binding domain, which has its tertiary structure maintained predominantly by noncovalent interactions between the trypsin-generated fragments. The estrogen, anti-estrogen, and unoccupied trypsinized ERs all result in similar patterns of fragments after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and detection by immunoblotting. Although no new trypsin cleavage sites were exposed, the sensitivity of the available trypsin sites was altered by heating the ER and, to a lesser extent, by hormone treatment. Gel filtration chromatography of the trypsinized estradiol- and 4-hydroxytamoxifen-occupied ERs demonstrates similar, diffuse peaks centered at about the correct size for the intact steroid binding domain (28 kDa), whereas the trypsinized unoccupied ER results in a sharp, discrete peak centered at about 80 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验