Suppr超能文献

Genes involved in the control of growth and differentiation in plants.

作者信息

Schell J, Koncz C, Spena A, Palme K, Walden R

机构信息

Max-Planck-Institute for Plant Breeding Research, Köln, Germany.

出版信息

Gene. 1993 Dec 15;135(1-2):245-9. doi: 10.1016/0378-1119(93)90072-b.

Abstract

The mechanisms underlying totipotency, the unique ability of isolated plant cells to regenerate into plants, offer developmental biology a unique challenge. While it has been recognised for some time that phytohormones, such as auxin and cytokinin, play a role in this process by inducing a variety of growth patterns in both isolated cells, unorganised callus and intact plants, the molecular basis of their action remains unknown. The molecular and biochemical analysis of the novel interaction between tumour-inducing soil bacteria and the wounded plant has provided a valuable insight into how plants respond to phytohormones. During tumour formation, the bacteria transfer to the genome of the host plant a variety of genes which either short circuit the normal pathways of accumulation of phytohormones or modify how the plant cell responds to them. In parallel to these studies, we have been investigating plant genes involved directly or indirectly in the mechanism of phytohormone action. Auxin-binding proteins (putative receptors) have been localised in various cellular locations and the genes encoding them are currently undergoing analysis. Recently, a novel form of T-DNA has been devised by which mutant plant cell lines can be generated which grow in culture in the absence of exogenously applied auxin. The tagged genes, which are in effect plant cellular proto-oncogenes, are likely to shed more light on how auxin serves to regulate growth and development.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验