Morand L Z, Kidd D G, Lagarias J C
Department of Biochemistry and Biophysics, University of California, Davis 95616.
Plant Physiol. 1993 Jan;101(1):97-104. doi: 10.1104/pp.101.1.97.
Experiments undertaken in this investigation examine the influence of light on the levels of phytochrome in the green alga Mesotaenium caldariorum and also provide partial protein sequence of the algal phytochrome. Immunochemical and spectrophotometric measurements reveal that phytochrome levels increase nearly 4-fold upon transfer of light-grown algal cells to total darkness during a 6- to 8-d adaptation period. Within 24 h after return to continuous illumination, the level of phytochrome in dark-adapted cells has decreased to that found in light-grown cells. Red or far-red light experiments show that both effects of light, phytochrome accumulation during dark adaptation and light-dependent decrease of phytochrome, do not depend on the form of the phytochrome photoreceptor (i.e. far-red absorbing or red absorbing) present in the algal cell. The light-dependent reduction of phytochrome in dark-adapted cells is inhibited by the photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, suggesting that this light effect is mediated by photosynthesis. Microsequence analyses of internal peptides indicate that algal phytochrome purified from dark-adapted cells shares the greatest sequence identity with phytochrome from the fern Selaginella (74%). Compared with higher plant photoreceptors, Mesotaenium phytochrome appears to be more closely related to phyB gene products (i.e. 62 and 63% average sequence identity) than to phyA gene products (i.e. 50 and 53% average sequence identity). Because light regulation and the structure of Mesotaenium phytochrome do not conform with either type I (light-labile) or type II (light-stable) phytochromes from higher plants, these results support the hypothesis that the lower green plant photoreceptors represent a distinct class of phytochrome.
本研究中进行的实验考察了光对绿藻嗜热中位藻中光敏色素水平的影响,并提供了藻类光敏色素的部分蛋白质序列。免疫化学和分光光度测量表明,在6至8天的适应期内,将光照培养的藻类细胞转移到完全黑暗环境中后,光敏色素水平增加了近4倍。在恢复持续光照后的24小时内,暗适应细胞中的光敏色素水平已降至光照培养细胞中的水平。红光或远红光实验表明,光的两种效应,即暗适应过程中光敏色素的积累和光依赖的光敏色素减少,不依赖于藻类细胞中存在的光敏色素光感受器的形式(即吸收远红光或吸收红光)。光合电子传递抑制剂3-(3,4-二氯苯基)-1,1-二甲基脲可抑制暗适应细胞中光依赖的光敏色素减少,这表明这种光效应是由光合作用介导的。内部肽段的微量序列分析表明,从暗适应细胞中纯化的藻类光敏色素与蕨类卷柏的光敏色素具有最高的序列同一性(74%)。与高等植物光感受器相比,嗜热中位藻光敏色素似乎与phyB基因产物的关系更为密切(即平均序列同一性为62%和63%),而与phyA基因产物的关系相对较远(即平均序列同一性为50%和53%)。由于嗜热中位藻光敏色素的光调节和结构既不符合高等植物的I型(光不稳定)光敏色素,也不符合II型(光稳定)光敏色素,这些结果支持了低等绿色植物光感受器代表一类独特光敏色素的假说。