Chow W S, Melis A, Anderson J M
Commonwealth Scientific and Industrial Organisation, Division of Plant Industry, Canberra, Australian Capital Territory, Australia.
Proc Natl Acad Sci U S A. 1990 Oct;87(19):7502-6. doi: 10.1073/pnas.87.19.7502.
The efficiency of photosynthetic electron transport depends on the coordinated interaction of photosystem II (PSII) and photosystem I (PSI) in the electron-transport chain. Each photosystem contains distinct pigment-protein complexes that harvest light from different regions of the visible spectrum. The light energy is utilized in an endergonic electron-transport reaction at each photosystem. Recent evidence has shown a large variability in the PSII/PSI stoichiometry in plants grown under different environmental irradiance conditions. Results in this work are consistent with the notion of a dynamic, rather than static, thylakoid membrane in which the stoichiometry of the two photosystems is adjusted and optimized in response to different light quality conditions. Direct evidence is provided that photosystem stoichiometry adjustments in chloroplasts are a compensation strategy designed to correct unbalanced absorption of light by the two photosystems. Such adjustments allow the plant to maintain a high quantum efficiency of photosynthesis under diverse light quality conditions and constitute acclimation that confers to plants a significant evolutionary advantage over that of a fixed photosystem stoichiometry in thylakoid membranes.
光合电子传递的效率取决于电子传递链中光系统II(PSII)和光系统I(PSI)的协同相互作用。每个光系统都包含独特的色素 - 蛋白复合体,这些复合体从可见光谱的不同区域捕获光能。光能在每个光系统的吸能电子传递反应中被利用。最近的证据表明,在不同环境光照条件下生长的植物中,PSII/PSI化学计量存在很大差异。这项工作的结果与类囊体膜是动态而非静态的观点一致,在这种动态膜中,两个光系统的化学计量会根据不同的光质条件进行调整和优化。有直接证据表明,叶绿体中光系统化学计量的调整是一种补偿策略,旨在纠正两个光系统对光的不均衡吸收。这种调整使植物能够在不同光质条件下维持较高的光合作用量子效率,并构成一种适应性变化,赋予植物相对于类囊体膜中固定光系统化学计量的显著进化优势。