Suppr超能文献

用磁共振方法测量的微循环血流的统计学描述。

Statistical description of microcirculatory flow as measured with an MR method.

作者信息

Su M Y, Nalcioglu O

机构信息

Department of Radiological Sciences, University of California, Irvine 92717-5000.

出版信息

J Magn Reson Imaging. 1993 Nov-Dec;3(6):883-7. doi: 10.1002/jmri.1880030615.

Abstract

Quantification of microcirculatory flow is important for the functional assessment of biologic systems. The authors describe a method of analyzing the dependence of the magnetic resonance (MR) signal intensity on microcirculatory flow. A gel bead phantom was used to simulate the randomly oriented flow capillaries, and the MR signal intensity of the phantom was studied at different flow velocities by using velocity-sensitized and -compensated spin-echo pulse sequences. A theoretical model based on the spin-phase phenomenon is proposed to elucidate the effect of flow on signal intensity. The velocity phase of a spin depends on its path and the corresponding velocity-encoding gradients. A Monte Carlo simulation was used to generate the path of a spin on the basis of a statistical model for flow through a random capillary network. From the velocity-phase distribution of a group of spins within a voxel, the signal attenuation due to flow can be calculated. The results of the statistical model and experimental measurements agreed well. Also, T1 and T2 effects in MR flow measurements were investigated. The current study provides a theoretical framework for understanding MR measurements of microcirculatory flow.

摘要

微循环血流量的量化对于生物系统的功能评估至关重要。作者描述了一种分析磁共振(MR)信号强度与微循环血流量之间依赖性的方法。使用凝胶珠体模来模拟随机取向的流动毛细血管,并通过使用速度敏感和补偿的自旋回波脉冲序列,在不同流速下研究体模的MR信号强度。提出了一种基于自旋相位现象的理论模型,以阐明流动对信号强度的影响。自旋的速度相位取决于其路径和相应的速度编码梯度。基于流经随机毛细血管网络的流动统计模型,使用蒙特卡罗模拟来生成自旋的路径。根据体素内一组自旋的速度相位分布,可以计算出由于流动引起的信号衰减。统计模型和实验测量结果吻合良好。此外,还研究了MR血流测量中的T1和T2效应。当前的研究为理解微循环血流的MR测量提供了一个理论框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验