Suppr超能文献

Hydroxyurea affects cell morphology, cation transport, and red blood cell adhesion in cultured vascular endothelial cells.

作者信息

Adragna N C, Fonseca P, Lauf P K

机构信息

Department of Pharmacology, Wright State University, School of Medicine, Dayton, OH 45401-0927.

出版信息

Blood. 1994 Jan 15;83(2):553-60.

PMID:8286751
Abstract

Hydroxyurea (HU) significantly increases fetal hemoglobin (Hb) production and concomitantly affects passive erythrocyte K transport and cell volume in patients homozygous for Hb S, thus decreasing disease severity. Red blood cells (RBCs) with Hb S display a greater adherence to vascular endothelial cells (VECs) than do Hb A cells, thus increasing the probability of vaso-occlusive crisis. The effect of HU on the structure and function of VECs is still unknown. In the present study, HU significantly changed, in a dose-dependent manner, the morphology and monovalent cation composition of cultured VECs after incubation in normal culture medium for up to 10 days in the absence and presence of 0.3 (therapeutic dose) and 3.0 (toxic dose) mmol/L HU. Treated cells showed significant morphologic changes such as an increase in apparent cell size and the formation of multinucleated giant cells. The protein content per dish decreased by 50% and 80% at 0.3 and 3.0 mmol/L HU, respectively, accompanied by an increase in cell Na (maximum, approximately 200%) and cell K (maximum, approximately 50%) contents at about days 4 to 6 and 8 to 10, respectively. In addition, HU decreased RBC adherence to VECs in experiments with 51Cr-loaded Hb A or Hb S RBCs. The HU-induced changes in VEC morphology, cation composition, and RBC adherence may be caused or accompanied by alterations in cell membrane permeability, transformation of endothelial cells, or decreased number/density of VEC adhesion molecules. Precise mechanisms of the HU effects warrant further investigation in light of the reported beneficial effects of HU in the treatment of sickle cell anemia.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验