Suppr超能文献

Searching for human epilepsy genes: a progress report.

作者信息

Leppert M, McMahon W M, Quattlebaum T G, Bjerre I, Zonana J, Shevell M I, Andermann E, Rosales T O, Ronen G M, Connolly M

机构信息

Department of Human Genetics, University of Utah, Salt Lake City.

出版信息

Brain Pathol. 1993 Oct;3(4):357-69. doi: 10.1111/j.1750-3639.1993.tb00764.x.

Abstract

Application of new genetic techniques has brought remarkable discoveries in the study of genetic diseases. The potential benefits from applying such technology to idiopathic epilepsies include improved understanding of cellular mechanisms and potential new methods of prevention and treatment. The complex problems involved in studying the hereditary epilepsies include: defining of specific phenotypes; detecting genetic and non-genetic heterogeneity; and specifying the appropriate mode of inheritance and penetrance. The gene loci for three primary epilepsies have been localized to specific chromosomal regions, and serve to demonstrate the process used in generalized linkage studies of hereditary epilepsy syndromes. Benign familial neonatal convulsions (BFNC) and Unverricht-Lundborg progressive myoclonus epilepsy are rare single-gene disorders that are sufficiently localized to chromosomal regions that positional cloning studies are likely to succeed. Juvenile myoclonic epilepsy (JME), a common hereditary syndrome with an uncertain mode of inheritance, has been reported to be linked to chromosome 6p. JME presents a challenge for generalized linkage methodology that may be overcome by attending to potential problems reviewed here. The candidate-gene method, combined with studies using animal models, holds promise for understanding these as well as other hereditary epilepsies.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验