Zucchi R, Ronca-Testoni S, Yu G, Galbani P, Ronca G, Mariani M
Scuola Superiore S. Anna, Istituto di Cardiologia, Italy.
Circ Res. 1994 Feb;74(2):271-80. doi: 10.1161/01.res.74.2.271.
We investigated the effect of ischemia and reperfusion on the cardiac ryanodine receptor, which corresponds to the sarcoplasmic reticulum Ca2+ channel. Isolated working rat hearts were subjected to 10 to 30 minutes of global ischemia, followed or not by reperfusion. Ischemia produced significant reduction in the density of high-affinity 3H-ryanodine binding sites, determined either in whole-heart homogenate (Bmax, 220 +/- 22, 203 +/- 12, and 228 +/- 14 fmol/mg protein after 10, 20, and 30 minutes of ischemia versus 298 +/- 18 fmol/mg protein in the control condition; P < .01) or in a fraction enriched in sarcoplasmic reticulum (Bmax, 1.08 +/- 0.15 pmol/mg protein after 20 minutes of ischemia versus 1.69 +/- 0.08 pmol/mg protein in the control condition; P < .01). The Kd (1.5 +/- 0.1 nmol/L) and the Ca2+ dependence of high-affinity 3H-ryanodine binding were not affected by ischemia. The density of low-affinity 3H-ryanodine binding sites was also reduced after 20 minutes of ischemia (14.0 +/- 2.3 versus 34.0 +/- 8.2 pmol/mg protein in the sarcoplasmic reticulum fraction, P < .05), without significant changes in Kd (4.7 +/- 1.2 versus 2.4 +/- 1.0 mumol/L). All these changes persisted after 20 minutes of reperfusion. Analysis of tissue fractions showed that 55% of the ryanodine binding sites were retained in the pellet of a low-speed centrifugation ("nuclear pellet") and that the effects of ischemia concerned only the receptors released in the supernatant ("postnuclear supernatant"). In parallel experiments, we evaluated the effect of ryanodine on oxalate-supported Ca2+ uptake, which represents sarcoplasmic reticulum Ca2+ uptake. As expected, we found that high concentrations of ryanodine stimulated Ca2+ uptake, owing to channel blockade. The response to 900 mumol/L ryanodine was slightly reduced in crude homogenate and significantly reduced in postnuclear supernatant obtained from ischemic hearts. In conclusion, the number of ryanodine receptors is reduced after ischemia; this effect concerns a subpopulation of the receptors, persists after reperfusion, and might contribute to modify sarcoplasmic reticulum function.
我们研究了缺血和再灌注对心肌兰尼碱受体的影响,该受体相当于肌浆网Ca2+通道。将离体工作大鼠心脏进行10至30分钟的全心缺血,随后进行或不进行再灌注。缺血导致高亲和力3H-兰尼碱结合位点密度显著降低,无论是在全心匀浆中测定(缺血10、20和30分钟后Bmax分别为220±22、203±12和228±14 fmol/mg蛋白质,而对照条件下为298±18 fmol/mg蛋白质;P<.01),还是在富含肌浆网的组分中测定(缺血20分钟后Bmax为1.08±0.15 pmol/mg蛋白质,而对照条件下为1.69±0.08 pmol/mg蛋白质;P<.01)。高亲和力3H-兰尼碱结合的Kd(1.5±0.1 nmol/L)和Ca2+依赖性不受缺血影响。缺血20分钟后,低亲和力3H-兰尼碱结合位点密度也降低(肌浆网组分中为14.0±2.3对34.0±8.2 pmol/mg蛋白质,P<.05),Kd无显著变化(4.7±1.2对2.4±1.0 μmol/L)。所有这些变化在再灌注20分钟后仍然存在。组织组分分析表明,55%的兰尼碱结合位点保留在低速离心的沉淀中(“核沉淀”),缺血的影响仅涉及上清液中释放的受体(“核后上清液”)。在平行实验中,我们评估了兰尼碱对草酸盐支持的Ca2+摄取的影响,该摄取代表肌浆网Ca2+摄取。正如预期的那样,我们发现高浓度的兰尼碱由于通道阻断而刺激Ca2+摄取。在粗匀浆中,对900 μmol/L兰尼碱的反应略有降低,而在缺血心脏获得的核后上清液中显著降低。总之,缺血后兰尼碱受体数量减少;这种影响涉及受体的一个亚群,再灌注后仍然存在,可能有助于改变肌浆网功能。