Suppr超能文献

中间神经元在控制海兔尾部退缩反射中的作用:一个网络模型。

The role of interneurons in controlling the tail-withdrawal reflex in Aplysia: a network model.

作者信息

White J A, Ziv I, Cleary L J, Baxter D A, Byrne J H

机构信息

Department of Neurobiology and Anatomy, University of Texas Medical School, Houston 77225.

出版信息

J Neurophysiol. 1993 Nov;70(5):1777-86. doi: 10.1152/jn.1993.70.5.1777.

Abstract
  1. The contributions of monosynaptic and polysynaptic circuitry to the tail-withdrawal reflex in the marine mollusk Aplysia californica were assessed by the use of physiologically based neural network models. Effects of monosynaptic circuitry were examined by the use of a two-layer network model with four sensory neurons in the input layer and one motor neuron in the output layer. Results of these simulations indicated that the monosynaptic circuit could not account fully for long-duration responses of tail motor neurons elicited by tail stimulation. 2. A three-layer network model was constructed by interposing a layer of two excitatory interneurons between the input and output layers of the two-layer network model. These interneurons had properties mimicking those of the recently described interneuron LP117, receiving excitatory input from pleural sensory neurons and evoking a biphasic excitatory postsynaptic potential (EPSP) in pedal motor neurons (Cleary and Byrne 1993). The three-layer model could account for long-duration responses in motor neurons. 3. Sensory neurons are a known site of plasticity in Aplysia. Synaptic plasticity was incorporated into the three-layer model by altering the magnitudes of conductance changes evoked in motor neurons and interneurons by presynaptic sensory neurons. In these simulations the excitatory interneurons converted an amplitude-coded input into an amplitude- and duration-coded output, allowing the three-layer network to support a large range of output amplitudes and durations. 4. Synaptic plasticity at more than one locus modified dramatically the input-output relationship of the three-layer network model. This feature gave the model redundancy in its plastic properties and points to the possibility of distributed memory in the circuitry mediating withdrawal reflexes in Aplysia. Multiple sites of control over the response of the network would likely allow a more diverse repertoire of responses.
摘要
  1. 通过使用基于生理学的神经网络模型,评估了单突触和多突触回路对海兔(加州海兔)尾部退缩反射的贡献。通过使用一个两层网络模型来研究单突触回路的作用,该模型的输入层有四个感觉神经元,输出层有一个运动神经元。这些模拟结果表明,单突触回路不能完全解释尾部刺激引起的尾部运动神经元的长时间反应。2. 通过在两层网络模型的输入层和输出层之间插入一层两个兴奋性中间神经元,构建了一个三层网络模型。这些中间神经元具有模仿最近描述的中间神经元LP117的特性,从胸膜感觉神经元接收兴奋性输入,并在踏板运动神经元中诱发双相兴奋性突触后电位(EPSP)(克利里和伯恩,1993年)。三层模型可以解释运动神经元的长时间反应。3. 感觉神经元是海兔中已知的可塑性位点。通过改变突触前感觉神经元在运动神经元和中间神经元中引起的电导变化幅度,将突触可塑性纳入三层模型。在这些模拟中,兴奋性中间神经元将幅度编码输入转换为幅度和持续时间编码输出,使三层网络能够支持大范围的输出幅度和持续时间。4. 多个位点的突触可塑性极大地改变了三层网络模型的输入-输出关系。这一特征赋予了模型在其可塑性特性方面的冗余性,并指出了海兔介导退缩反射的电路中存在分布式记忆的可能性。对网络反应的多个控制位点可能允许产生更多样化的反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验