Suppr超能文献

A new quantitative method for the analysis of cardiac perfusion tomography (SPET): validation in post-infarct patients treated with thrombolytic therapy.

作者信息

Mortelmans L, Nuyts J, Scheys I, Wackers F, Lesaffre E, Brzostek T, De Roo M, De Geest H, Suetens P, Verbruggen A

机构信息

Department of Nuclear Medicine, Katholieke Universiteit Leuven, Belgium.

出版信息

Eur J Nucl Med. 1993 Dec;20(12):1193-200. doi: 10.1007/BF00171018.

Abstract

In this study a new method for assessment of perfusion defects (PDs) derived from myocardial perfusion tomograms was evaluated in patients treated with thrombolytic therapy. Using global constraints and dynamic programming, a model-based delineation algorithm defined myocardial borders, the basal plane and absolute and relative PD size in 49 thallium-201 chloride (201TL CL) and 60 technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) tomograms. Tomographic (single-photon emission tomography: SPET) and planar quantification of PDs was compared to enzymatic infarct size as well as to global (LVEF) and regional ventricular function (RWM) obtained by contrast angiography. The algorithm delineated the myocardium and the valve plane in most cases, even when large PDs were present. Manual correction of the automatic delineation of the basal plane was necessary in less than 20% of the studies. Using 201Tl Cl, LVEF correlated better with tomographic PD (r = -0.67) than with planar PD (r = -0.54). Comparing planar to tomographic imaging using 99mTc-MIBI, a higher correlation with enzymatic infarct size (r = 0.73 vs 0.57) and with global ventricular function (r = 0.64 vs -0.52) was found when tomographic techniques were used. No close correlation between PD and RWM was found. The beneficial effect of thrombolysis was shown by a significant difference of PD in patients with open versus occluded infarct-related vessels. It can be concluded that this new automated algorithm for quantification of SPET perfusion defect size provides a useful tool in evaluating thrombolytic therapy.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验