Suppr超能文献

Recognition by HLA-A2-restricted cytotoxic T lymphocytes of endogenously generated and exogenously provided synthetic peptide analogues of the influenza A virus matrix protein.

作者信息

Sauma S Y, Gammon M C, Bednarek M A, Cunningham B, Biddison W E, Hermes J D, Porter G, Tamhankar S, Hawkins J C, Bush B L

机构信息

Merck Research Laboratories, Rahway, NJ 07065.

出版信息

Hum Immunol. 1993 Aug;37(4):252-8. doi: 10.1016/0198-8859(93)90508-x.

Abstract

Experiments were carried out to determine whether complexes between MHC class I molecules and synthetic peptides are representative of those formed under more physiologically relevant conditions, with peptides derived intracellularly from processed antigens. Lysis of cells sensitized with exogenously provided and endogenously generated peptide analogues of the optimal nonameric peptide 58-66 (GILGFVFTL; derived from the influenza virus matrix protein) was compared. Endogenous loading was accomplished by expressing minigene DNA coding for alanine-substituted analogues of peptide 58-66 in HLA-A2-positive cells. Susceptibility to lysis by HLA-A2-restricted, peptide-specific cytotoxic lymphocytes was compared with lysis of cells sensitized with the same synthetic peptides. Although results were quite comparable, differences were observed. The endogenously presented analogues 58-66L60A, G61A, T65A, and L66A were recognized more efficiently than the corresponding exogenously presented analogues. This difference in recognition was most striking for peptide 58-66G61A. These results indicate the need for caution in using synthetic peptides in defining peptide binding motifs. Additional experiments with endogenously expressed analogues of 58-66 with substitutions other than alanine were carried out to define the interaction between this peptide and HLA-A2. Results are compatible with the interpretation that residues 58, 59, and 60 interact with pockets A, B, and D, respectively, in the HLA-A2 binding groove and that these interactions contribute to peptide binding.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验