Suppr超能文献

Study of glomerular permselectivity for proteins of the glomerular basement membrane using a dialyzer model.

作者信息

Nagake Y, Makino H, Hironaka K, Kashihara N, Ota Z

机构信息

Third Department of Internal Medicine, Okayama University Medical School, Japan.

出版信息

Nephron. 1993;65(4):587-95. doi: 10.1159/000187569.

Abstract

The glomerular basement membrane (GBM) is considered to regulate glomerular permselectivity for proteins by acting as both size barrier and charge barrier. Since heparan sulfate-proteoglycan (HS-PG), which forms the charge barrier of GBM, contains a sulfonic acid, we made membranes with various degrees of negative charge models of GBM by addition of sulfonic acid to ethylene vinyl alcohol (EVAL) membranes. A high-resolution scanning electron-microscopic study revealed no ultrastructural alterations after adding sulfonic acid to EVAL membranes. Both neutrally and negatively charged membranes had porous structures in the inner surface of the membranes. The interrelation between the two actions of size and charge of GBM was studied using special dialyzers with various degrees of negative charge and different pore sizes. The negatively charged membranes adsorbed proteins with positive charge and repulsed proteins with negative charge. The degrees of adsorption and repulsion were weaker in membranes with larger pores and were stronger for proteins with larger molecular weights. The permselectivity for proteins of a charged membrane depends largely upon the interrelation between the pore size of the membrane and the size of the proteins. It is, therefore, suggested that the presence of a size barrier in GBM is necessary for the charge barrier to effectively exert glomerular permselectivity for proteins. Our study may lead to the development of a dialyzer with higher permselectivity by adding sulfonic acid rather than conventional dialyzers.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验