Sun M K, Reis D J
Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021.
Am J Physiol. 1994 Jan;266(1 Pt 2):R245-56. doi: 10.1152/ajpregu.1994.266.1.R245.
Systemic hypoxia [PaO2 27.3 +/- 1.8 (SE) mmHg] in anesthetized paralyzed rats reversibly increased within seconds the arterial pressure and activities of the sympathetic nerves and the reticulospinal vasomotor neurons of the rostral ventrolateral medulla (RVL). After peripheral chemodenervation, hypoxia also increased activity of the sympathetic nerves and doubled discharges of the vasomotor neurons while inhibiting a majority of the RVL respiratory neurons. Systemic hypercapnia was not effective in eliciting sympathoexcitatory responses. Iontophoresis of sodium cyanide stimulated the vasomotor and inhibited the respiratory neurons. In contrast, iontophoreses of H+, HCO3-, and lactate were without effects on activity of the vasomotor neurons. We conclude 1) hypoxia excites the vasomotor neurons by activating the arterial chemoreceptors and by activating intrinsic cellular mechanisms probably unrelated to accumulation of metabolic byproducts; 2) hypoxia may be the adequate stimulus exciting the RVL-spinal vasomotor and inhibiting the respiratory neurons during the cerebral ischemic response; and 3) these vasomotor neurons may be central oxygen detectors.
在麻醉的瘫痪大鼠中,全身性低氧[动脉血氧分压为27.3±1.8(标准误)mmHg]在数秒内可逆地升高动脉血压、交感神经活动以及延髓头端腹外侧区(RVL)的网状脊髓血管运动神经元的活动。外周化学感受器去神经支配后,低氧仍增加交感神经活动,并使血管运动神经元的放电增加一倍,同时抑制大多数RVL呼吸神经元。全身性高碳酸血症不能有效引发交感兴奋反应。氰化钠离子透入刺激血管运动神经元并抑制呼吸神经元。相反,氢离子、碳酸氢根离子和乳酸的离子透入对血管运动神经元的活动没有影响。我们得出以下结论:1)低氧通过激活动脉化学感受器以及激活可能与代谢副产物积累无关的内在细胞机制来兴奋血管运动神经元;2)在脑缺血反应期间,低氧可能是兴奋RVL-脊髓血管运动神经元并抑制呼吸神经元的适宜刺激;3)这些血管运动神经元可能是中枢性氧感受器。