Suppr超能文献

两种状态下全螺旋蛋白的二级结构预测。

Secondary structure prediction of all-helical proteins in two states.

作者信息

Rost B, Sander C

机构信息

Protein Design Group, EMBL, Heidelberg, Germany.

出版信息

Protein Eng. 1993 Nov;6(8):831-6. doi: 10.1093/protein/6.8.831.

Abstract

Can secondary structure prediction be improved by prediction rules that focus on a particular structural class of proteins? To help answer this question, we have assessed the accuracy of prediction for all-helical proteins, using two conceptually different methods and two levels of description. An overall two-state single-residue accuracy of approximately 80% can be obtained by a neural network, no matter whether it is trained on two states (helix and non-helix) or first trained on three states (helix, strand and loop) and then evaluated on two states. For four test proteins, this is similar to the accuracy obtained with inductive logic programming. We conclude that on the level of secondary structure, there is no practical advantage in training on two states, especially given the added margin of error in identifying the structural class of a protein. In the further development of these methods, it is increasingly important to focus on aspects of secondary structure that aid in the construction of a correct 3-D model, such as the correct placement of segments.

摘要

专注于特定结构类别的蛋白质的预测规则能否改进二级结构预测?为了帮助回答这个问题,我们使用两种概念上不同的方法和两个描述层次,评估了全螺旋蛋白质的预测准确性。无论神经网络是在两种状态(螺旋和非螺旋)上训练,还是先在三种状态(螺旋、链和环)上训练,然后在两种状态上评估,通过神经网络都可以获得大约80%的总体二态单残基准确率。对于四种测试蛋白质,这与归纳逻辑编程获得的准确率相似。我们得出结论,在二级结构层面,在两种状态上训练没有实际优势,特别是考虑到在识别蛋白质结构类别时增加的误差范围。在这些方法的进一步发展中,关注有助于构建正确三维模型的二级结构方面,如片段的正确放置,变得越来越重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验