Diddens H, Zähner H, Kraas E, Göhring W, Jung G
Eur J Biochem. 1976 Jun 15;66(1):11-23. doi: 10.1111/j.1432-1033.1976.tb10420.x.
The two tripeptide antibiotics L-2-amino-4-methylphosphinobutyryl-alanyl-alanyl-alanine (L-phosphinothricyl-alanyl-alanine) and L-(N5-phosphono)methionine-S-sulfoximinyl-alanyl-alanine, both inhibitors of the glutamine synthetase, are transported into the cell of Escherichia coli K 12 via the oligopeptide transport system. The uptake by this system is proved first of all by cross-resistance with tri-L-ornithine using oligopeptide-transport-deficient mutants, and secondly by antagonism tests demonstrating competitive reversal of the action of the antibiotic by several peptides which have been shown to be transported via the oligopeptide transport system, e.g. tri-L-alanine, tetra-L-alanine, tri-L-lysine, tri-L-serine, tri-glycine, glycyl-glycyl-L-alanine and the synthetic tripeptide L-azadenyl-aminohexanoyl-alanyl-alanine. On the other hand, there is no effect on the action of the antibiotic in antagonism tests with compounds which use different transport systems, such as L-alanyl-alanine, L-lysyl-lysine, glutathione and the synthetic amino acid azaadenylaminohexanoic acid, i.e. 2-amino-6-(7-amino-3H-v-triazolo-[4,5-d]-pyrimidin-3-yl)hexanoic acid. Another inhibitor of the glutamine synthetase, L-methionine-S-dioxide (methioninesulfone) could be converted into a tripeptide form by linkage to L-alanyl-alanine analogously to the tripeptide antibiotics described above. Whereas the free L-methionine-S-dioxide seems to be transported via the methionine transport system, the tripeptide form is transported via the oligopeptide transport system. Thus, this glutamine synthetase inhibitor can be taken up by the cell via two different transport mechanisms. Our results indicate that this could provide a synergistic effect. The syntheses of the new tripeptides L-azaadenylaminohexanoyl-alanyl-alanine and L-methionine-S-dioxidyl-alanyl-alanine were performed by dicyclohexylcarbodiimide couplings of the unusual N-protected L-alpha-amino acids azaadenylaminohexanoic acid and L-methionine-S-dioxide to L-alanyl-alanine-tert-butyl ester followed by common deprotection steps. Tri-L-ornithine was synthesized without carboxyl protection via two successive couplings of hydroxybenzotriazol esters of Nalpha-butoxycarbonyl-Ndelta-benzyloxycarbonyl-L-ornithine.
两种三肽抗生素L-2-氨基-4-甲基膦酰基丁酰基-丙氨酰-丙氨酰-丙氨酸(L-膦丝菌素-丙氨酰-丙氨酸)和L-(N5-膦酰基)甲硫氨酸-S-亚磺酰亚胺基-丙氨酰-丙氨酸,均为谷氨酰胺合成酶的抑制剂,它们通过寡肽转运系统被转运到大肠杆菌K12细胞中。首先,利用寡肽转运缺陷型突变体与三-L-鸟氨酸的交叉抗性证明了该系统的摄取作用;其次,通过拮抗试验证明了该抗生素的作用可被几种已证明通过寡肽转运系统转运的肽竞争性逆转,例如三-L-丙氨酸、四-L-丙氨酸、三-L-赖氨酸、三-L-丝氨酸、三-甘氨酸、甘氨酰-甘氨酰-L-丙氨酸以及合成三肽L-氮杂腺苷基-氨基己酰基-丙氨酰-丙氨酸。另一方面,在用使用不同转运系统的化合物进行的拮抗试验中,如L-丙氨酰-丙氨酸、L-赖氨酰-赖氨酸、谷胱甘肽和合成氨基酸氮杂腺苷基氨基己酸,即2-氨基-6-(7-氨基-3H-v-三唑-[4,5-d]-嘧啶-3-基)己酸,对该抗生素的作用没有影响。谷氨酰胺合成酶的另一种抑制剂L-甲硫氨酸-S-二氧化物(甲硫氨酸砜)可以通过与上述三肽抗生素类似的方式与L-丙氨酰-丙氨酸连接而转化为三肽形式。游离的L-甲硫氨酸-S-二氧化物似乎通过甲硫氨酸转运系统转运,而三肽形式则通过寡肽转运系统转运。因此,这种谷氨酰胺合成酶抑制剂可以通过两种不同的转运机制被细胞摄取。我们的结果表明,这可能会产生协同效应。新型三肽L-氮杂腺苷基氨基己酰基-丙氨酰-丙氨酸和L-甲硫氨酸-S-二氧化物基-丙氨酰-丙氨酸的合成是通过将不寻常的N-保护的L-α-氨基酸氮杂腺苷基氨基己酸和L-甲硫氨酸-S-二氧化物与L-丙氨酰-丙氨酸叔丁酯进行二环己基碳二亚胺偶联,然后进行常规脱保护步骤来完成的。三-L-鸟氨酸是通过Nα-叔丁氧羰基-Nδ-苄氧羰基-L-鸟氨酸的羟基苯并三唑酯的两次连续偶联,在没有羧基保护的情况下合成的。