Suppr超能文献

Changes in synaptic density after developmental compression or expansion of retinal input to the superior colliculus.

作者信息

Xiong M, Finlay B L

机构信息

Department of Psychology, Cornell University, Ithaca, New York 14853.

出版信息

J Comp Neurol. 1993 Apr 22;330(4):455-63. doi: 10.1002/cne.903300402.

Abstract

The retinal projection to the superior colliculus can be made abnormally dense by inducing a "compressed" retinal projection into a subnormal tectal volume, or abnormally sparse by monocular enucleation early in development. Any or all of the features of cell number, axonal arbor, dendritic arbor, and synaptic density could potentially be adjusted to compensate for such variations in the convergence of one cell population on another. We have examined the consequences of neonatal partial tectal ablation or monocular enucleation for synaptic length, density, and relative numbers of synapse classes in the superficial gray layer of the hamster superior colliculus. Monocular enucleation resulted in a reduction of synaptic density in the superficial gray layer of the colliculus ipsilateral to the remaining eye. This decrease in density was entirely accounted for by a reduction of the number of synapses with round vesicles, large asymmetric terminal specializations, and pale mitochondria characteristic of retinocollicular terminals (RLP synapses). There was no compensatory increase in any other synaptic class. RLP synapses were larger in monocular enucleates. Partial tectal ablation had no effect on synaptic density, nor on the relative proportions of different synaptic types. Synapses of the RLP class were slightly smaller than normal. These results suggest that synaptic density is normally at a maximum that cannot be altered by increases in potential input. However, density may be reduced by decreasing the number of inputs. Terminal classes do not appear to compete with each other within the collicular volume, suggesting that postsynaptic cells controls both the classes and numbers of their potential inputs.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验