Dornay M, Sanger T D
Cognitive Processes Department, ATR Auditory and Visual Perception Research Laboratories, Kyoto, Japan.
Biol Cybern. 1993;68(6):499-508. doi: 10.1007/BF00200809.
A planar 17 muscle model of the monkey's arm based on realistic biomechanical measurements was simulated on a Symbolics Lisp Machine. The simulator implements the equilibrium point hypothesis for the control of arm movements. Given initial and final desired positions, it generates a minimum-jerk desired trajectory of the hand and uses the backdriving algorithm to determine an appropriate sequence of motor commands to the muscles (Flash 1987; Mussa-Ivaldi et al. 1991; Dornay 1991b). These motor commands specify a temporal sequence of stable (attractive) equilibrium positions which lead to the desired hand movement. A strong disadvantage of the simulator is that it has no memory of previous computations. Determining the desired trajectory using the minimum-jerk model is instantaneous, but the laborious backdriving algorithm is slow, and can take up to one hour for some trajectories. The complexity of the required computations makes it a poor model for biological motor control. We propose a computationally simpler and more biologically plausible method for control which achieves the benefits of the backdriving algorithm. A fast learning, tree-structured network (Sanger 1991c) was trained to remember the knowledge obtained by the backdriving algorithm. The neural network learned the nonlinear mapping from a 2-dimensional cartesian planar hand position (x,y) to a 17-dimensional motor command space (u1, . . ., u17). Learning 20 training trajectories, each composed of 26 sample points [[x,y], [u1, . . ., u17] took only 20 min on a Sun-4 Sparc workstation. After the learning stage, new, untrained test trajectories as well as the original trajectories of the hand were given to the neural network as input. The network calculated the required motor commands for these movements. The resulting movements were close to the desired ones for both the training and test cases.
基于实际生物力学测量的猴子手臂平面17肌肉模型在Symbolics Lisp机器上进行了模拟。该模拟器实现了用于控制手臂运动的平衡点假设。给定初始和最终期望位置,它会生成手部的最小急动期望轨迹,并使用反向驱动算法来确定向肌肉发送的适当运动命令序列(Flash,1987年;Mussa-Ivaldi等人,1991年;Dornay,1991b)。这些运动命令指定了一系列稳定(有吸引力)的平衡点的时间序列,从而导致期望的手部运动。该模拟器的一个很大的缺点是它没有对先前计算的记忆。使用最小急动模型确定期望轨迹是即时的,但繁琐的反向驱动算法很慢,对于某些轨迹可能需要长达一小时。所需计算的复杂性使其成为生物运动控制的一个糟糕模型。我们提出了一种计算上更简单且在生物学上更合理的控制方法,该方法实现了反向驱动算法的优点。一个快速学习的树状结构网络(Sanger,1991c)经过训练以记住通过反向驱动算法获得的知识。神经网络学习了从二维笛卡尔平面手部位置(x,y)到17维运动命令空间(u1,...,u17)的非线性映射。在Sun-4 Sparc工作站上学习20条训练轨迹,每条轨迹由26个采样点[[x,y],[u1,...,u17]]组成,仅需20分钟。在学习阶段之后,新的、未训练的测试轨迹以及手部的原始轨迹作为输入提供给神经网络。网络计算这些运动所需的运动命令。对于训练和测试情况,所产生的运动都接近期望的运动。