Maghsoudi R, White C D
St. Mary's University, San Antonio, TX 78228.
Biomed Sci Instrum. 1993;29:191-8.
Electroencephalogram (EEG) can provide important information about the functioning of the human brain. In particular, the EEG waveforms manifest certain changes due to application of drugs, such as general anesthetics. Measurement of the changes in the EEG waveforms in real time, may therefore be used to determine the global effects of the administered drug. Among numerous mathematical techniques used in the analysis of the EEG waveforms, perhaps, the fast Fourier transform (FFT) is the most widely used. Recently some researchers have suggested the use of the autoregressive moving average (ARMA) model for the EEG analysis. In this method the coefficients of the ARMA model are identified and used to describe the waveform. We consider a first order ARMA model, and use the Extended Least Squares (ELS) and its recursive version (RELS) for parameter estimation. The identified parameters are then used to describe the time-domain or the frequency-domain properties of the EEG waveforms. Since the parameters of the model may change with time, a forgetting factor is incorporated in the RELS algorithm to allow for tracking of time varying parameters. The advantage of recursive estimation of the coefficients of the ARMA model over the non-recursive estimation and the FFT method, is substantial reduction in computation as well as its capability to track the time varying process.
脑电图(EEG)能够提供有关人类大脑功能的重要信息。特别是,脑电图波形会因药物(如全身麻醉剂)的应用而出现某些变化。因此,实时测量脑电图波形的变化可用于确定所给药的整体效果。在用于分析脑电图波形的众多数学技术中,快速傅里叶变换(FFT)可能是使用最广泛的。最近,一些研究人员建议使用自回归移动平均(ARMA)模型进行脑电图分析。在这种方法中,识别ARMA模型的系数并用于描述波形。我们考虑一阶ARMA模型,并使用扩展最小二乘法(ELS)及其递归版本(RELS)进行参数估计。然后,所识别的参数用于描述脑电图波形的时域或频域特性。由于模型的参数可能随时间变化,因此在RELS算法中纳入了遗忘因子,以允许跟踪时变参数。与非递归估计和FFT方法相比,ARMA模型系数的递归估计的优点是计算量大幅减少以及能够跟踪时变过程。