Willems G M, Giesen P L, Hermens W T
Cardiovascular Research Institute Maastricht, University of Limburg, The Netherlands.
Blood. 1993 Jul 15;82(2):497-504.
In most flow systems, the rate of protein transfer from bulk solution to a macroscopic surface is site-dependent. In studies on surface-mediated protein conversion, this hampers the comparison of a proposed expression for the conversion process, such as the Michaelis-Menten equation, which actually measured overall conversion rates. However, the rotating disc is a classical example of a uniformly accessible surface and therefore was used for a quantitative analysis of prothrombin conversion by the phospholipid-bound factor Xa/factor Va complex (prothrombinase complex). A simple design of a rotating disc, adapted for ellipsometric measurement of protein adsorption, is presented. Agreement between experiment and theory was obtained for the influence of rotation velocity on the initial, transport-limited, adsorption rates of lysozyme, prothrombin, and fibrinogen. After coverage of the disc with a 20% phosphatidylserine/80% phosphatidylcholine bilayer and preadsorption of factor Va, addition of excess factor Xa and prothrombin resulted in effective conversion of prothrombin. For high (10 fmol.cm-2) surface coverage of prothrombinase, the rate of conversion equals the transport limited adsorption rate of prothrombin. For low (0.1 to 0.5 fmol.cm-2) surface concentrations of prothrombinase, the conversion rate dropped below the transport limit and the intrinsic kinetic parameters could be estimated at Km = 7.1 +/- 1.2 nM and kcat = 25 +/- 1.0 s-1 (20 degrees C). At these low surface activities of prothrombinase, the effect of the rotation rate (6 to 225 rad.s-1) on prothrombin conversion could be explained by the rotation-rate dependent prothrombin transport. This indicates that the fluid shear rate has no drastic influence on the intrinsic kinetics of prothrombin conversion.
在大多数流动系统中,蛋白质从本体溶液转移到宏观表面的速率取决于位点。在表面介导的蛋白质转化研究中,这妨碍了对转化过程的拟议表达式(如米氏方程)进行比较,因为该方程实际测量的是总体转化率。然而,旋转圆盘是表面均匀可及的经典例子,因此被用于对磷脂结合的因子Xa/因子Va复合物(凝血酶原酶复合物)介导的凝血酶原转化进行定量分析。本文介绍了一种适用于蛋白质吸附椭圆偏振测量的旋转圆盘的简单设计。实验与理论在旋转速度对溶菌酶、凝血酶原和纤维蛋白原的初始、传输受限吸附速率的影响方面取得了一致。在用20%磷脂酰丝氨酸/80%磷脂酰胆碱双层覆盖圆盘并预吸附因子Va后,加入过量的因子Xa和凝血酶原导致凝血酶原有效转化。对于凝血酶原酶的高表面覆盖率(10 fmol·cm-2),转化率等于凝血酶原的传输受限吸附速率。对于凝血酶原酶的低表面浓度(0.1至0.5 fmol·cm-2),转化率降至传输极限以下,并且可以估计内在动力学参数为Km = 7.1±1.2 nM和kcat = 25±1.0 s-1(20℃)。在凝血酶原酶的这些低表面活性下,旋转速率(6至225 rad·s-1)对凝血酶原转化的影响可以通过与旋转速率相关的凝血酶原传输来解释。这表明流体剪切速率对凝血酶原转化的内在动力学没有剧烈影响。