Bogerd H P, Fridell R A, Blair W S, Cullen B R
Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710.
J Virol. 1993 Aug;67(8):5030-4. doi: 10.1128/JVI.67.8.5030-5034.1993.
The formation of dimers or higher-order multimers is critical to the biological activity of many eukaryotic regulatory proteins. However, biochemical analyses of the multimerization capacity of the Tat trans activator of human immunodeficiency virus types 1 (HIV-1) and 2 (HIV-2) have yielded contradictory results. We used the two-hybrid genetic assay for protein-protein interactions in the eukaryote Saccharomyces cerevisiae (S. Fields and O.-K. Song, Nature [London] 340:245-246, 1989) to examine the multimerization of Tat in vivo. Both HIV-1 and HIV-2 Tat are shown to form specific homo- but not heteromultimers in the yeast cell nucleus. Mutational analysis indicates a critical role for the essential core motif of Tat in mediating this interaction but demonstrates that efficient Tat multimerization does not require an intact cysteine motif. These data raise the possibility that the multimerization of Tat may be important for Tat function in higher eukaryotes.
二聚体或高阶多聚体的形成对于许多真核生物调节蛋白的生物活性至关重要。然而,对人类免疫缺陷病毒1型(HIV-1)和2型(HIV-2)的反式激活因子Tat的多聚化能力进行的生化分析得出了相互矛盾的结果。我们利用真核生物酿酒酵母中用于蛋白质-蛋白质相互作用的双杂交遗传检测方法(S. 菲尔兹和O.-K. 宋,《自然》[伦敦]340:245 - 246, 1989)来检测Tat在体内的多聚化情况。结果显示,HIV-1和HIV-2的Tat在酵母细胞核中均能形成特异性的同多聚体,但不能形成异多聚体。突变分析表明,Tat的必需核心基序在介导这种相互作用中起关键作用,但也证明高效的Tat多聚化并不需要完整的半胱氨酸基序。这些数据提示,Tat的多聚化可能对高等真核生物中Tat的功能很重要。