Patel A, Uhl G, Kuhar M J
Molecular Pharmacology Section, NIDA Addiction Research Center, Baltimore, Maryland 21224.
J Neurochem. 1993 Aug;61(2):496-500. doi: 10.1111/j.1471-4159.1993.tb02151.x.
The apparent molecular masses of photoaffinity-labeled dopamine transporters (DATs) from rat, human, dog, and primate kidney COS cells expressing the rat DAT1 cDNA differ. Sequences predicted from cDNA cloning reveal only one amino acid difference between the length of the rat and human DAT but one less site for potential N-linked glycosylation in the human DAT. Possible posttranslational and postmortem bases for species differences in DAT molecular mass were explored. Rat DAT proteins from striata subjected to approximately 5 h of postmortem delay modeled after the human postmortem delay process revealed small but consistent losses in apparent molecular mass and in cocaine analogue binding; the DAT molecular mass displayed no further losses for up to 30 h of model postmortem treatment. Degradative postmortem changes could thus contribute to molecular mass differences between rat and human DATs. Neuraminidase treatment reduced the apparent molecular mass of native rat DAT but not that of the rat DAT expressed in COS cells, suggesting that the sugars added to the DAT expressed in COS cells were different than those added to the rat brain striatal transporter. These differences could account for the somewhat higher Km values for expressed DAT cDNA in COS cells when compared with the wild-type striatal transporter. These results are in accord with the differences in number of predicted N-linked glycosylation sites between rat and human DATs and with cell-type specificity in transporter posttranslational processing.
表达大鼠多巴胺转运体1(DAT1)cDNA的大鼠、人类、犬类和灵长类动物肾COS细胞中,经光亲和标记的多巴胺转运体(DAT)的表观分子质量有所不同。cDNA克隆预测的序列显示,大鼠和人类DAT的长度仅存在一个氨基酸差异,但人类DAT中潜在的N-糖基化位点少一个。本文探究了DAT分子量物种差异可能的翻译后和死后基础。按照人类死后延迟过程模拟,对纹状体的大鼠DAT蛋白进行约5小时的死后延迟处理后,其表观分子质量和可卡因类似物结合能力出现了小幅度但持续的下降;在长达30小时的模拟死后处理中,DAT分子量没有进一步下降。因此,死后降解变化可能导致大鼠和人类DAT之间的分子量差异。神经氨酸酶处理降低了天然大鼠DAT的表观分子质量,但未降低COS细胞中表达的大鼠DAT的表观分子质量,这表明添加到COS细胞中表达的DAT上的糖与添加到大鼠脑纹状体转运体上的糖不同。与野生型纹状体转运体相比,这些差异可能解释了COS细胞中表达的DAT cDNA的Km值略高的原因。这些结果与大鼠和人类DAT预测的N-糖基化位点数量差异以及转运体翻译后加工中的细胞类型特异性一致。