Dietzen D J, Davis E J
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202.
Arch Biochem Biophys. 1993 Aug 15;305(1):91-102. doi: 10.1006/abbi.1993.1397.
Mitochondria isolated from normal rat liver and AS-30D hepatoma were concurrently evaluated with regard to their bioenergetic and metabolic properties. AS-30D mitochondria oxidized many NAD-linked respiratory substrates at rates 1.5-4 times faster than those from liver, a fact which contributes to their diminished membrane depolarization on conversion from state 4 to state 3 respiration. AS-30D mitochondria exhibited no signs of a "truncated" Krebs cycle, nor did they oxidize malate preferentially based upon its origin in the cytosol or the mitochondrial matrix. In addition, beta-oxidation in AS-30D mitochondria was not sufficient to suppress respiratory CO2 production and induce pyruvate carboxylation to the extent observed in liver. Finally, AS-30D mitochondria were able to oxidize externally generated NADH in a reconstituted system, but in a manner independent of the transmembrane electrical potential (delta psi), suggesting that the malate-aspartate shuttle is not operable in vivo. This fact may necessitate the adaptations tumor cells make to reoxidize cytosolic NADH through glycolysis even in the presence of adequate oxygen.
对从正常大鼠肝脏和AS - 30D肝癌中分离出的线粒体的生物能量和代谢特性进行了同步评估。AS - 30D线粒体氧化许多与NAD相关的呼吸底物的速率比肝脏线粒体快1.5至4倍,这一事实导致它们在从状态4呼吸转变为状态3呼吸时膜去极化程度降低。AS - 30D线粒体没有表现出“截断”的 Krebs 循环的迹象,也没有根据苹果酸来自胞质溶胶还是线粒体基质而优先氧化苹果酸。此外,AS - 30D线粒体中的β - 氧化不足以抑制呼吸性CO₂ 的产生并诱导丙酮酸羧化至肝脏中观察到的程度。最后,AS - 30D线粒体能够在重组系统中氧化外部产生的NADH,但方式与跨膜电势(δψ)无关,这表明苹果酸 - 天冬氨酸穿梭在体内不可行。这一事实可能使肿瘤细胞即使在有充足氧气的情况下也需要通过糖酵解来重新氧化胞质溶胶中的NADH进行适应。