Setlik R F, Garduno-Juarez R, Manchester J I, Shibata M, Ornstein R L, Rein R
Biophysics Department, Roswell Park Cancer Institute, Buffalo, New York 14263.
J Biomol Struct Dyn. 1993 Jun;10(6):945-72. doi: 10.1080/07391102.1993.10508689.
A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.
嗜热四膜虫I组内含子的三维模型被用于进一步探索切割步骤中转磷酸化反应的催化机制。基于Michel和Westhof提出的催化核心模型的坐标(Michel, F., Westhof, E. J. Mol. Biol. 216, 585 - 610 (1990)),我们首先通过替换几个碱基并去除螺旋P9,将他们的连接步骤模型转化为切割步骤模型。接下来,尝试将一个三角双锥过渡态模型置于活性位点,结果表明由于空间不足,这个改进后的切割步骤模型无法容纳过渡态。相对于周围螺旋降低P1螺旋提供了所需的额外空间。同时,它为模拟Pyle等人(Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123 - 128. (1992))基于涉及J8/7片段的突变研究提出的分子接触提供了更好的起始几何结构。以功能相似的Klenow片段的晶体结构(Beese, L.S., Steitz, T.A. EMBO J. 10, 25 - 33 (1991))为指导,将两个水合Mg2+配合物置于核酶模型的活性位点。内含子活性位点中存在两个金属离子与之前的模型不同,之前的模型在催化位点包含一个金属离子以履行Mg2+在催化中的假定作用。基于三角双锥过渡态模拟反应过程,并使用分子轨道计算进一步探索水合Mg2+配合物在催化中的作用。