Suppr超能文献

Defense mechanisms in insects: certain integumental proteins and tyrosinase are responsible for nonself-recognition and immobilization of Escherichia coli in the cuticle of developing Ceratitis capitata.

作者信息

Marmaras V J, Bournazos S N, Katsoris P G, Lambropoulou M

机构信息

Department of Biology, University of Patras, Greece.

出版信息

Arch Insect Biochem Physiol. 1993;23(4):169-80. doi: 10.1002/arch.940230404.

Abstract

A defense mechanism in the cuticle of developing C. capitata was demonstrated using an in vitro system consisting of isolated cuticular tyrosinase from C. capitata, cuticular tyrosinase-free proteins, tyrosine, and E. coli. The simultaneous presence of the above components resulted in the formation of large immobilized E. coli aggregates. By contrast, omission of any of the above components failed to produce such aggregates. In other words, E. coli retained their mobility and viability. The results indicate that certain cuticular proteins are responsible for the nonself-recognition, since they are able to bind to the E. coli surface in vitro, and a reactive tyrosine derivative is generated by the action of cuticular tyrosinase for the immobilization and probably killing of E. coli. Based on these studies the most likely explanation for the nonself-recognition and immobilization and/or killing of bacteria is the production of E. coli-protein complexes and their crosslinking through quinone intermediate.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验