Suppr超能文献

医学诊断专家系统的图形化知识获取

Graphical knowledge acquisition for medical diagnostic expert systems.

作者信息

Gappa U, Puppe F, Schewe S

机构信息

Universität Karlsruhe, Institut für Logik, Germany.

出版信息

Artif Intell Med. 1993 Jun;5(3):185-211. doi: 10.1016/0933-3657(93)90024-w.

Abstract

Like many textbook authors use text systems for writing their books, expert system authors should have easy to use knowledge acquisition systems for entering and testing their knowledge bases by themselves without much help from 'knowledge engineers'. In this paper, we report on a graphical knowledge acquisition tool (CLASSIKA) based on an expert system shell for heuristic classification (MED2) and designed for direct use by domain experts. We demonstrate how the system has been used for building a rather large expert system for diagnosing rheumatology diseases which is now being tested in clinical use.

摘要

如同许多教科书作者使用文本系统来撰写书籍一样,专家系统作者也应该拥有易于使用的知识获取系统,以便在无需“知识工程师”太多帮助的情况下自行输入和测试其知识库。在本文中,我们报告了一种基于启发式分类专家系统外壳(MED2)的图形化知识获取工具(CLASSIKA),该工具专为领域专家直接使用而设计。我们展示了该系统如何被用于构建一个相当大型的用于诊断风湿病的专家系统,该系统目前正在临床应用中进行测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验