Suppr超能文献

A model of brain arteriolar oxygen and carbon dioxide transport during anemia.

作者信息

Schacterle R S, Ribando R J, Adams J M

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville.

出版信息

J Cereb Blood Flow Metab. 1993 Sep;13(5):872-80. doi: 10.1038/jcbfm.1993.109.

Abstract

Existing experimental and theoretical evidence suggests that precapillary diffusion of O2 and CO2 occurs between arterioles and tissue under normal physiologic conditions. However, limited information is available on arteriolar gas transport during anemia. With use of a mathematical model of an arteriolar network in brain tissue, anemic hematocrits of 35, 25, and 15% were modeled to determine the effect of anemia on the exchange, the change in the equilibrium tissue O2 and CO2 tensions, and the increase in blood flow needed to restore tissue oxygenation. We found that the blood PO2 exiting the network fell from 66 mm Hg normally to 48 mm Hg during the severest anemia. Concurrently, the equilibrium tissue O2 tensions dropped from 44 to 23 mm Hg. For CO2 the exit blood PCO2 was 58 mm Hg for a 15% hematocrit, an increase of 4 mm Hg from the normal value, and equilibrium tissue PCO2 increased from 56 to 61 mm Hg. Blood flow increases from normal values necessary to offset the effects of the decreased O2 delivery to the tissue were 26, 86, and 222%, respectively, for hematocrits of 35, 25, and 15%. We compared our model results with recent experimental studies that have suggested that the amount of O2 diffusion is much higher than predicted values. We found that these experimental O2 gradients are three to four times larger than theoretical.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验