Ueda Y, Bookchin R M
J Lab Clin Med. 1984 Aug;104(2):146-59.
Findings that polymerization of hemoglobin S is an oxygen-linked function, and that CO2 has an O2 affinity-independent effect on deoxyhemoglobin S polymerization suggests that varying PCO2 might have different effects on respiratory functions and other red blood cell properties of blood in sickle cell anemia (SS) compared with normal blood (AA). We examined the O2 affinity, Bohr effect, transmembrane pH gradient, mean cell hemoglobin concentration, and red blood cell sickling at half O2 saturation in whole SS and AA blood during CO2 titration and acid-base titration at three PCO2 levels, 10, 40, and 80 mm Hg. The CO2-induced Bohr effect of SS blood was considerably larger than normal (maximum, 0.91, referred to cell pH) and similar to that found with acid-base titration at PCO2 of 40. In contrast to AA blood, SS blood showed an increased O2 affinity when PCO2 was raised from 40 to 80, and at half O2 saturation showed biphasic or sigmoid Bohr curves, a fall in transmembrane pH gradient with rising PCO2, and an absence of the normal cell volume increase at low pH and PCO2. Sickling of SS cells at half O2 saturation was partly inhibited by increasing PCO2, particularly in the higher pH ranges. These complex differences in the behavior of SS blood are interpreted in terms of the balancing of several effects: the lowering of hemoglobin O2-affinity by polymerization, low pH and increased CO2 binding, inhibition of hemoglobin S polymerization by CO2 binding to beta s-chain amino termini, differences between hemoglobin S and A in competitive binding of CO2 and 2,3-diphosphoglycerate at different pH levels, and an increased net negative charge exhibited by intracellular deoxyhemoglobin S polymers. From a clinical standpoint, in the absence of hypoxia or acidosis, an increased blood PCO2 might have a beneficial effect by inhibiting red blood cell sickling, whereas a metabolic acidosis, with low blood pH and PCO2, would be very hazardous.
血红蛋白S的聚合是一种与氧相关的功能,并且二氧化碳对脱氧血红蛋白S的聚合具有不依赖于氧亲和力的作用,这表明与正常血液(AA型)相比,不同的二氧化碳分压可能对镰状细胞贫血(SS型)患者血液的呼吸功能和其他红细胞特性产生不同影响。我们在三个二氧化碳分压水平(10、40和80毫米汞柱)下,对全血SS型和AA型血液进行二氧化碳滴定和酸碱滴定期间,检测了氧亲和力、波尔效应、跨膜pH梯度、平均细胞血红蛋白浓度以及在半氧饱和度时红细胞的镰变情况。SS型血液中二氧化碳诱导的波尔效应明显大于正常情况(最大值为0.91,以细胞pH计),与在40毫米汞柱二氧化碳分压下进行酸碱滴定的结果相似。与AA型血液不同,当二氧化碳分压从40升高到80时,SS型血液的氧亲和力增加,并且在半氧饱和度时呈现双相或S形的波尔曲线,随着二氧化碳分压升高跨膜pH梯度下降,在低pH和低二氧化碳分压时正常的细胞体积增加消失。在半氧饱和度时,增加二氧化碳分压可部分抑制SS型细胞的镰变,尤其是在较高pH范围内。SS型血液行为的这些复杂差异可以通过几种效应的平衡来解释:聚合作用导致血红蛋白氧亲和力降低、低pH和二氧化碳结合增加、二氧化碳与βs链氨基末端结合抑制血红蛋白S聚合、在不同pH水平下血红蛋白S和A在二氧化碳和2,3 - 二磷酸甘油酸竞争性结合方面的差异以及细胞内脱氧血红蛋白S聚合物表现出的净负电荷增加。从临床角度来看,在没有缺氧或酸中毒的情况下,血液中二氧化碳分压升高可能通过抑制红细胞镰变产生有益作用,而代谢性酸中毒,伴有低血pH和低二氧化碳分压,则会非常危险。