Suppr超能文献

Effects of adenosine and angiotensin on macula densa-stimulated renin secretion.

作者信息

Lorenz J N, Weihprecht H, He X R, Skøtt O, Briggs J P, Schnermann J

机构信息

Department of Physiology, University of Michigan, Ann Arbor 48104.

出版信息

Am J Physiol. 1993 Aug;265(2 Pt 2):F187-94. doi: 10.1152/ajprenal.1993.265.2.F187.

Abstract

The present studies were performed to assess, in the isolated perfused juxtaglomerular apparatus of the rabbit kidney, the effect of exogenous adenosine on renin secretion stimulated by a low NaCl concentration at the macula densa. Addition of adenosine to the bath resulted in a change of renin secretion from 30.4 to 23.9 nGU/min at an adenosine concentration of 10(-6) M (n = 7; P = NS), from 38.6 to 17.9 nGU/min at a concentration of 10(-4) M (n = 7; P = 0.038), and from 18.4 to 5.8 nGU/min at 10(-2) M (P = 0.0053). Addition of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine at 10(-5) M fully reversed the effect of adenosine at 10(-4) M, but not at 10(-2) M. Inhibition of adenosine breakdown by the adenosine deaminase inhibitor pentostatin (10(-6) M) enhanced the inhibitory effect of adenosine with renin secretion falling from 61.7 to 19.5 nGU/min at 10(-6) M adenosine (P = 0.035) and from 44.7 to 13.5 nGU/min at 10(-4) M adenosine (n = 0.027). A marked inhibition of NaCl-dependent renin secretion was caused by both angiotensin II (P = 0.011) and angiotensin III (P = 0.006), both at 10(-8) M. These results show that adenosine is capable of reducing macula densa-mediated renin secretion, but that this effect, even at very high concentrations or during adenosine deaminase blockade, does not fully mimic the inhibitory potency of increasing luminal NaCl concentration. Because the marked effect caused by angiotensins establishes the potential of this preparation to demonstrate inhibitory hormonal influences, it is concluded that adenosine does not appear to be the sole paracrine factor responsible for the NaCl-induced reduction of renin secretion.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验