Suppr超能文献

通过距离矩阵比对进行蛋白质结构比较。

Protein structure comparison by alignment of distance matrices.

作者信息

Holm L, Sander C

机构信息

European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany.

出版信息

J Mol Biol. 1993 Sep 5;233(1):123-38. doi: 10.1006/jmbi.1993.1489.

Abstract

With a rapidly growing pool of known tertiary structures, the importance of protein structure comparison parallels that of sequence alignment. We have developed a novel algorithm (DALI) for optimal pairwise alignment of protein structures. The three-dimensional co-ordinates of each protein are used to calculate residue-residue (C alpha-C alpha) distance matrices. The distance matrices are first decomposed into elementary contact patterns, e.g. hexapeptide-hexapeptide submatrices. Then, similar contact patterns in the two matrices are paired and combined into larger consistent sets of pairs. A Monte Carlo procedure is used to optimize a similarity score defined in terms of equivalent intramolecular distances. Several alignments are optimized in parallel, leading to simultaneous detection of the best, second-best and so on solutions. The method allows sequence gaps of any length, reversal of chain direction and free topological connectivity of aligned segments. Sequential connectivity can be imposed as an option. The method is fully automatic and identifies structural resemblances and common structural cores accurately and sensitively, even in the presence of geometrical distortions. An all-against-all alignment of over 200 representative protein structures results in an objective classification of known three-dimensional folds in agreement with visual classifications. Unexpected topological similarities of biological interest have been detected, e.g. between the bacterial toxin colicin A and globins, and between the eukaryotic POU-specific DNA-binding domain and the bacterial lambda repressor.

摘要

随着已知三级结构数量的迅速增加,蛋白质结构比较的重要性与序列比对相当。我们开发了一种用于蛋白质结构最优两两比对的新算法(DALI)。每个蛋白质的三维坐标用于计算残基-残基(Cα-Cα)距离矩阵。距离矩阵首先被分解为基本的接触模式,例如六肽-六肽子矩阵。然后,将两个矩阵中相似的接触模式配对并组合成更大的一致配对集。使用蒙特卡罗程序优化根据等效分子内距离定义的相似性得分。并行优化多个比对,从而同时检测出最佳、次佳等解决方案。该方法允许任意长度的序列间隙、链方向的反转以及比对片段的自由拓扑连接性。也可选择强制实施顺序连接性。该方法是完全自动化的,即使存在几何变形,也能准确且灵敏地识别结构相似性和共同的结构核心。对200多个代表性蛋白质结构进行的全对全比对,得出了与视觉分类一致的已知三维折叠的客观分类。已经检测到了具有生物学意义的意外拓扑相似性,例如细菌毒素大肠杆菌素A与球蛋白之间,以及真核生物POU特异性DNA结合结构域与细菌λ阻遏物之间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验