Aström S U, von Pawel-Rammingen U, Byström A S
Department of Microbiology, University of Umeå, Sweden.
J Mol Biol. 1993 Sep 5;233(1):43-58. doi: 10.1006/jmbi.1993.1483.
Saccharomyces cerevisiae uses two different methionine accepting tRNAs during protein synthesis. One, tRNA(iMet), is used exclusively during the initiation of translation whereas the other, tRNA(mMet), is used during the elongation of translation. To study the unique features of each methionine tRNA species, we constructed yeast strains with null alleles of the five elongator methionine tRNA (EMT) genes and strains with null alleles of the four initiator methionine tRNA (IMT) genes, respectively. Consequently, growth of these strains was dependent either on a tRNA(mMet) or a tRNA(iMet), respectively, encoded from a plasmid-derived gene. For both null mutants, the plasmid carrying the wild-type gene can be selected against and exchanged for another plasmid derived EMT or IMT gene (wild-type or mutant). A high gene dosage of the wild-type IMT gene could restore growth to the elongator-depleted strain. However, wild-type EMT genes in a high gene dosage never restored growth of the initiator depleted strain. Thus, the elongator tRNA(Met) is much more restricted to participate in the initiation of translation than the initiator tRNA(Met) is restricted to participate in the elongation process. Using the two null mutants, we have identified tRNA(mMet) mutants, which show reduced elongator activity, and tRNA(iMet) mutants, with improved elongator activity in the elongator depleted strain. Also, tRNA(mMet) mutants that function as an initiator tRNA in the initiator depleted strain were identified. From this mutant analysis, we showed that the conserved U/rT at position 54 of the elongator tRNA(Met) is an important determinant for an elongator tRNA. The most important determinant for an initiator was shown to be the acceptor stem and especially the conserved A1.U72 base-pair. Mutant tRNAs, with reduced activity in either process, were investigated for enhanced activity during overproduction of the alpha and beta-subunits of the eukaryotic initiation factor 2 (eIF-2) or the eukaryotic elongation factor 1 alpha (eEF-1 alpha). The data suggest that the U/rT of the elongator at position 54 is important for eEF-1 alpha recognition and that the acceptor stem of the initiator is important for eIF-2 recognition.
酿酒酵母在蛋白质合成过程中使用两种不同的甲硫氨酸接受tRNA。一种是tRNA(iMet),仅在翻译起始阶段使用,而另一种是tRNA(mMet),在翻译延伸阶段使用。为了研究每种甲硫氨酸tRNA的独特特征,我们分别构建了五个延伸因子甲硫氨酸tRNA(EMT)基因的无效等位基因的酵母菌株和四个起始因子甲硫氨酸tRNA(IMT)基因的无效等位基因的酵母菌株。因此,这些菌株的生长分别依赖于质粒衍生基因编码的tRNA(mMet)或tRNA(iMet)。对于这两种无效突变体,可以选择并替换携带野生型基因的质粒,用另一个衍生自质粒的EMT或IMT基因(野生型或突变型)。野生型IMT基因的高基因剂量可以恢复延伸因子缺失菌株的生长。然而,高基因剂量的野生型EMT基因从未恢复起始因子缺失菌株的生长。因此,延伸因子tRNA(Met)参与翻译起始的限制比起始因子tRNA(Met)参与延伸过程的限制要大得多。利用这两种无效突变体,我们鉴定出了延伸活性降低的tRNA(mMet)突变体和在延伸因子缺失菌株中延伸活性提高的tRNA(iMet)突变体。此外,还鉴定出了在起始因子缺失菌株中起起始因子tRNA作用的tRNA(mMet)突变体。通过这种突变体分析,我们表明延伸因子tRNA(Met)第54位的保守U/rT是延伸因子tRNA的重要决定因素。已证明起始因子的最重要决定因素是受体茎,尤其是保守的A1.U72碱基对。对在任一过程中活性降低的突变tRNA进行了研究,以观察在真核起始因子2(eIF-2)或真核延伸因子1α(eEF-1α)的α和β亚基过量产生期间其活性是否增强。数据表明,延伸因子第54位的U/rT对eEF-1α识别很重要,而起始因子的受体茎对eIF-2识别很重要。