Suppr超能文献

低血糖:脑神经化学与神经病理学

Hypoglycaemia: brain neurochemistry and neuropathology.

作者信息

Auer R N, Siesjö B K

机构信息

University of Calgary, Foothills Hospital, Alberta, Canada.

出版信息

Baillieres Clin Endocrinol Metab. 1993 Jul;7(3):611-25. doi: 10.1016/s0950-351x(05)80210-1.

Abstract

The widespread use of insulin and oral hypoglycaemic agents has increased the incidence of hypoglycaemic brain damage due to accidental, suicidal, or homicidal overdose. Hypoglycaemia is capable of damaging the brain in the face of intact cardiac function, but neuronal necrosis occurs only when the electroencephalogram (EEG) becomes isoelectric. Neurochemical changes are distinct from ischaemia, and cerebral blood flow is actually increased, in contrast to cerebral ischaemia. Salient neurochemical changes include an arrest of protein synthesis in many but not all brain regions, a shift of brain redox equilibria towards oxidation, incomplete energy failure, loss of ion homeostasis, cellular calcium influx, intracellular alkalosis, and a release of neuroactive amino acids, especially aspartate, into the extracellular space of the brain. The metabolic release of aspartate, and to a lesser extent glutamate, into the interstitial space of the brain produces histopathological patterns of neuronal death that can be distinguished from ischaemic brain damage in experimental brain tissue and, occasionally, in brains from human autopsies after hypoglycaemic brain damage. The excitatory amino acids released during profound hypoglycaemia bind to neuronal dendrites and perikarya, but not to other cell types in the nervous system, thus giving rise to selective neuronal death. The absence of acidosis, and an adequate blood supply during hypoglycaemia, protect the brain against pan-necrosis or infarction. However, the neurons die more quickly during hypoglycaemic brain damage than after cerebral ischaemia. Hypoglycaemic brain damage thus falls into the newly defined class of cerebral 'excitotoxic' neuropathologies, where neurons are selectively killed by an extracellular overflow of excitatory amino acids produced by the brain itself. The pathogenesis of hypoglycaemic brain damage is thus rather more novel and intriguing than was thought even a decade ago, when it was believed that glucose starvation and simple energy failure resulted directly in neuronal catabolism.

摘要

胰岛素和口服降糖药的广泛使用增加了因意外、自杀或他杀性用药过量导致低血糖性脑损伤的发生率。在心脏功能完好的情况下,低血糖能够损害大脑,但只有当脑电图(EEG)变为等电位时才会发生神经元坏死。神经化学变化与缺血不同,与脑缺血相反,脑血流量实际上是增加的。显著的神经化学变化包括许多但并非所有脑区蛋白质合成的停止、脑氧化还原平衡向氧化方向的转变、不完全的能量衰竭、离子稳态的丧失、细胞钙内流、细胞内碱中毒以及神经活性氨基酸尤其是天冬氨酸释放到脑的细胞外空间。天冬氨酸以及程度较轻的谷氨酸代谢性释放到脑的间质空间会产生神经元死亡的组织病理学模式,这种模式在实验性脑组织中以及偶尔在低血糖性脑损伤后的人类尸检大脑中能够与缺血性脑损伤区分开来。严重低血糖期间释放的兴奋性氨基酸与神经元树突和胞体结合,但不与神经系统中的其他细胞类型结合,从而导致选择性神经元死亡。低血糖期间不存在酸中毒且有充足的血液供应,可保护大脑免于全坏死或梗死。然而,低血糖性脑损伤期间神经元死亡的速度比脑缺血后更快。因此,低血糖性脑损伤属于新定义的脑“兴奋性毒性”神经病理学类别,即神经元被大脑自身产生的兴奋性氨基酸细胞外溢出选择性杀死。因此,低血糖性脑损伤的发病机制比甚至十年前人们所认为的更为新颖和引人入胜,当时人们认为葡萄糖饥饿和单纯的能量衰竭直接导致神经元分解代谢。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验