Stahl G L, Pan H L, Longhurst J C
Department of Internal Medicine, University of California, Davis.
Circ Res. 1993 Jun;72(6):1266-75. doi: 10.1161/01.res.72.6.1266.
Abdominal ischemia and reperfusion evoke reflex excitation of the cardiovascular system and generate reactive oxygen species. We have shown previously that the reactive oxygen species hydrogen peroxide (H2O2) elicits reflex excitation of the cardiovascular system after serosal application to abdominal organs. However, it is not known if ischemia-sensitive afferents respond to reactive oxygen species or if scavengers such as dimethylthiourea (DMTU) inhibit the response of these afferents to ischemia or reperfusion. Therefore, to provide more information on the neurophysiological mechanisms underlying the activation of these afferents, we studied their responses to H2O2 applied to the receptive field during recordings of single-unit activity of ischemia-insensitive or -sensitive abdominal visceral C fiber afferents in anesthetized cats. Additionally, we recorded single-unit activity of ischemia and reperfusion-sensitive afferents before and after treatment with DMTU (10 mg/kg), which scavenges H2O2 and hydroxyl radicals or the iron chelator deferoxamine (DEF, 10 mg/kg), which inhibits hydroxyl radical formation. Application of 44 mumol H2O2 to afferent endings increased the discharge frequency in nine of 11 ischemia-sensitive units, from 0.01 +/- 0.01 to 0.67 +/- 0.16 impulses per second. In contrast, only one of 10 ischemia-insensitive C fibers responded to H2O2 application. In an additional 13 ischemia-sensitive C fibers, DMTU significantly (p < 0.05) attenuated ischemia-induced increases in discharge frequency from 0.42 +/- 0.18 to 0.24 +/- 0.1 impulses per second (ischemia versus DMTU + ischemia, respectively). In eight additional C fibers, we found that reperfusion after 5 minutes of ischemia was associated with an increase in discharge activity from a baseline activity of 0.02 +/- 0.01 to 0.44 +/- 0.07 impulses per second. DMTU significantly attenuated the reperfusion-induced increases in discharge frequency from 0.08 +/- 0.04 to 0.18 +/- 0.06 impulses per second. DEF significantly (p < 0.05) attenuated the increased discharge activity from 0.39 +/- 0.07 to 0.10 +/- 0.04 impulses per second (ischemia versus DEF + ischemia, respectively) in an additional 11 ischemia-sensitive C fibers. In contrast, iron-saturated DEF did not attenuate ischemia- and reperfusion-induced increases in impulse activity. Thus, ischemia-sensitive but not ischemia-insensitive abdominal visceral afferents respond to H2O2. Furthermore, ischemia- and reperfusion-sensitive afferents decreased their impulse activity to a repeated period of ischemia or reperfusion after DMTU or DEF treatment. These data suggest that reactive oxygen species, particularly H2O2 and hydroxyl radicals, activate abdominal visceral C fibers in the cat during brief periods of ischemia and reperfusion.
腹部缺血与再灌注可引起心血管系统的反射性兴奋并产生活性氧。我们之前已经表明,活性氧过氧化氢(H2O2)在浆膜应用于腹部器官后可引发心血管系统的反射性兴奋。然而,尚不清楚对缺血敏感的传入神经是否对活性氧有反应,或者诸如二甲基硫脲(DMTU)之类的清除剂是否会抑制这些传入神经对缺血或再灌注的反应。因此,为了提供更多关于这些传入神经激活背后神经生理机制的信息,我们在麻醉猫的腹部内脏C纤维传入神经(对缺血不敏感或敏感)的单单位活动记录期间,研究了它们对应用于感受野的H2O2的反应。此外,我们记录了用DMTU(10mg/kg)处理前后对缺血和再灌注敏感的传入神经的单单位活动,DMTU可清除H2O2和羟自由基,以及铁螯合剂去铁胺(DEF,10mg/kg),其可抑制羟自由基的形成。将44μmol H2O2应用于传入神经末梢使11个对缺血敏感的单位中的9个单位的放电频率增加,从每秒0.01±0.01次冲动增加到每秒0.67±0.16次冲动。相比之下,10个对缺血不敏感的C纤维中只有1个对H2O2的应用有反应。在另外13个对缺血敏感的C纤维中,DMTU显著(p<0.05)减弱了缺血诱导的放电频率增加,从每秒0.42±0.18次冲动降至每秒0.24±0.1次冲动(分别为缺血组与DMTU+缺血组)。在另外8个C纤维中,我们发现缺血5分钟后的再灌注与放电活动增加有关,从基线活动每秒0.02±0.01次冲动增加到每秒0.44±0.07次冲动。DMTU显著减弱了再灌注诱导的放电频率增加,从每秒0.08±0.04次冲动降至每秒0.18±0.06次冲动。在另外11个对缺血敏感的C纤维中,DEF显著(p<0.05)减弱了放电活动增加,从每秒0.39±0.07次冲动降至每秒0.10±0.04次冲动(分别为缺血组与DEF+缺血组)。相比之下,铁饱和的DEF并未减弱缺血和再灌注诱导的冲动活动增加。因此,对缺血敏感而非对缺血不敏感的腹部内脏传入神经对H2O2有反应。此外,对缺血和再灌注敏感的传入神经在DMTU或DEF处理后,对重复的缺血或再灌注期其冲动活动减少。这些数据表明,在短暂的缺血和再灌注期间,活性氧,特别是H2O2和羟自由基,激活了猫的腹部内脏C纤维。