Nakagawa N, Ghishan F K
Department of Pediatric Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2576.
Proc Soc Exp Biol Med. 1993 Jul;203(3):328-35. doi: 10.3181/00379727-203-43607.
The hypophosphatemic mouse is a useful model for the study of hypophosphatemic vitamin D-resistant rickets in humans. Hypophosphatemia and hyperphosphaturia are the main biochemical findings in the patients and in mice with the disorder. The exact membrane localization of the site of the defect in phosphate transport in humans is not known. We utilized a well-validated technique of brush border and basolateral membrane vesicles to investigate phosphate transport across the enterocyte and the renal tubule cells of the hypophosphatemic (Hyp) mice model. Phosphate uptake by brush border membranes of jejunal enterocytes revealed similar initial rates (slopes were 0.007 and 0.006 for Hyp and control mice, respectively). Kinetics of jejunal Na(+)-dependent phosphate uptake showed a Vmax of 0.21 +/- 0.03 and 0.19 +/- 0.02 nmol/mg protein/15 sec, and Km of 0.12 +/- 0.07 and 0.09 +/- 0.02 mM in the Hyp and control mice, respectively. Kinetics of basolateral uptake of phosphate were also similar (Vmax of 0.05 +/- 0.01 and 0.06 +/- 0.02 nmol/mg protein/10 sec and Km of 0.013 +/- 0.004 and 0.028 +/- 0.022 mM, respectively). On the other hand, kinetics of Na(+)-dependent phosphate uptake by renal brush border membrane vesicles (BBMV) were markedly decreased (Vmax of 0.42 +/- 0.03 and 1.09 +/- 0.06 nmol/mg protein/15 sec, P < 0.01, and Km of 0.01 +/- 0.003 and 0.05 +/- 0.02 mM, P < 0.02, in the Hyp and control mice, respectively). Kinetics of Na(+)-dependent phosphate uptake by renal basolateral membrane were not decreased (Vmax of 0.19 +/- 0.02 and 0.21 +/- 0.02 nmol/mg protein/10 sec and Km of 0.012 +/- 0.003 and 0.012 +/- 0.004 mM for Hyp and control mice, respectively). To determine whether the decrease in renal BBMV is secondary to alteration in the Na(+)-dependent phosphate transporter or due to changes in the Na+ gradient, two studies were conducted: first, a tracer exchange study in renal BBMV which showed a decrease in phosphate uptake in Hyp BBMV compared with controls, confirming the kinetic studies; and second, an Na+ permeability study in renal BBMV of Hyp and control mice which showed no differences in Na+ permeability across the renal BBMV. These findings suggest that the defect in the hypophosphatemic mice is localized only to the brush border membranes of the kidney and is not due to alteration in the driving forces across the membranes.
低磷血症小鼠是研究人类低磷血症性维生素D抵抗性佝偻病的有用模型。低磷血症和高磷尿症是患有该疾病的患者和小鼠的主要生化表现。人类磷酸盐转运缺陷位点的确切膜定位尚不清楚。我们利用一种经过充分验证的刷状缘和基底外侧膜囊泡技术,研究磷酸盐在低磷血症(Hyp)小鼠模型的肠上皮细胞和肾小管细胞中的转运情况。空肠肠上皮细胞刷状缘膜对磷酸盐的摄取显示出相似的初始速率(Hyp小鼠和对照小鼠的斜率分别为0.007和0.006)。空肠钠依赖性磷酸盐摄取的动力学显示,Hyp小鼠和对照小鼠的Vmax分别为0.21±0.03和0.19±0.02 nmol/mg蛋白质/15秒,Km分别为0.12±0.07和0.09±0.02 mM。基底外侧磷酸盐摄取的动力学也相似(Vmax分别为0.05±0.01和0.06±0.02 nmol/mg蛋白质/10秒,Km分别为0.013±0.004和0.028±0.022 mM)。另一方面,肾刷状缘膜囊泡(BBMV)钠依赖性磷酸盐摄取的动力学显著降低(Hyp小鼠和对照小鼠的Vmax分别为0.42±0.03和1.09±0.06 nmol/mg蛋白质/15秒,P<0.01;Km分别为0.01±0.003和0.05±0.02 mM,P<0.02)。肾基底外侧膜钠依赖性磷酸盐摄取的动力学没有降低(Hyp小鼠和对照小鼠的Vmax分别为0.19±0.02和0.21±0.02 nmol/mg蛋白质/10秒,Km分别为0.012±0.003和0.012±0.004 mM)。为了确定肾BBMV的降低是钠依赖性磷酸盐转运体改变的继发结果还是由于钠梯度变化,进行了两项研究:第一,在肾BBMV中进行示踪剂交换研究,结果显示与对照相比,Hyp BBMV中磷酸盐摄取减少,证实了动力学研究结果;第二,对Hyp小鼠和对照小鼠的肾BBMV进行钠通透性研究,结果显示肾BBMV的钠通透性没有差异。这些发现表明,低磷血症小鼠的缺陷仅局限于肾刷状缘膜,并非由于跨膜驱动力的改变。