Suppr超能文献

蜗牛(罗马蜗牛)离体神经元中的钙钳制

Calcium clamp in isolated neurones of the snail Helix pomatia.

作者信息

Belan P, Kostyuk P, Snitsarev V, Tepikin A

机构信息

A.A. Bogomoletz Institute of Physiology, Ukrainian Academy of Sciences, Kiev.

出版信息

J Physiol. 1993 Mar;462:47-58. doi: 10.1113/jphysiol.1993.sp019542.

Abstract
  1. Intracellular free calcium concentration ([Ca2+]i) in isolated non-identified Helix pomatia neurones has been clamped at different physiologically significant levels by a feedback system between the fluorescent signal of fura-2 probe loaded into the cell and ionophoretic injection of Ca2+ ions through a CaCl2-loaded microelectrode. The membrane potential of the neurone has also been clamped using a conventional two-microelectrode method. 2. Special measurements have shown that the transport indices of injecting microelectrodes filled with 50 mM CaCl2 are quite variable (0.11 +/- 0.06, mean +/- S.D.). However, for each electrode the transport indices remained stable during several injection trials into a solution drop having the size of a neurone. The spread of calcium ions from the tip of the microelectrode across the cytosol of the neurone terminated within 2-4 s. The spatial difference in [Ca2+]i at this time did not exceed 10%. 3. Clamping of [Ca2+]i at a new increased level was accompanied by a transient of the Ca(2+)-injecting current. To increase [Ca2+]i by 0.1 microM, the amount of calcium ions injected during this stage had to be 36 +/- 20 microM Ca2+ per cell volume. Obviously, this transient represents the filling of a fast cytosolic buffer which has to be saturated to reach a new increased level of [Ca2+]i. It was followed by a steady component of Ca(2+)-injecting current, which was quite low (corresponding to injection of 0.39 +/- 0.20 microM s-1 for a 0.1 microM change of [Ca2+]i). This may represent the functioning of Ca(2+)-eliminating systems and corresponds to a similar amount of Ca2+ extruded from the cytoplasm. 4. Changes in the injection current also developed when Ca2+ influx through the membrane was triggered by the activation of voltage-gated calcium channels. The amount of Ca2+ entering the cell during the first seconds of depolarization to--15 mV was equal to 0.59 +/- 0.31 microM s-1 per cell volume. 5. No activation of Ca(2+)-dependent potassium current was observed during the changes in [Ca2+]i to levels exceeding the basal one by several times. Obviously, to activate this current, a much stronger increase in [Ca2+]i is needed in the immediate vicinity of the corresponding channels.
摘要
  1. 通过加载到细胞内的fura - 2探针的荧光信号与通过加载CaCl₂的微电极进行离子电泳注射Ca²⁺离子之间的反馈系统,将分离出的未识别的苹果螺神经元内的细胞内游离钙浓度([Ca²⁺]i)钳制在不同的生理显著水平。神经元的膜电位也使用传统的双微电极方法进行钳制。2. 特殊测量表明,填充50 mM CaCl₂的注射微电极的转运指数变化很大(0.11±0.06,平均值±标准差)。然而,对于每个电极,在对具有神经元大小的溶液滴进行多次注射试验期间,转运指数保持稳定。钙离子从微电极尖端扩散穿过神经元细胞质在2 - 4秒内终止。此时[Ca²⁺]i的空间差异不超过10%。3. 将[Ca²⁺]i钳制在新的升高水平时伴随着Ca²⁺注射电流的瞬变。为了使[Ca²⁺]i增加0.1 μM,在此阶段每个细胞体积注入的钙离子量必须为36±20 μM Ca²⁺。显然,这个瞬变代表了快速细胞质缓冲液的填充,必须使其饱和才能达到[Ca²⁺]i的新升高水平。随后是Ca²⁺注射电流的稳定成分,其相当低(对于[Ca²⁺]i的0.1 μM变化,对应于0.39±0.20 μM s⁻¹的注射)。这可能代表了Ca²⁺消除系统的功能,并且对应于从细胞质中挤出的相似量的Ca²⁺。4. 当电压门控钙通道激活引发Ca²⁺通过膜内流时,注射电流也会发生变化。去极化到 - 15 mV的最初几秒内进入细胞的Ca²⁺量等于每个细胞体积0.59±0.31 μM s⁻¹。5. 在[Ca²⁺]i变化到超过基础水平几倍的过程中,未观察到Ca²⁺依赖性钾电流的激活。显然,要激活这种电流,在相应通道的紧邻区域需要[Ca²⁺]i有更强的增加。

相似文献

1
Calcium clamp in isolated neurones of the snail Helix pomatia.
J Physiol. 1993 Mar;462:47-58. doi: 10.1113/jphysiol.1993.sp019542.
2
Calcium clamp in single nerve cells.
Cell Calcium. 1993 Jun;14(6):419-25. doi: 10.1016/0143-4160(93)90001-m.
3
Relationship between intracellular calcium and its muffling measured by calcium iontophoresis in snail neurones.
J Physiol. 1996 Mar 15;491 ( Pt 3)(Pt 3):621-33. doi: 10.1113/jphysiol.1996.sp021244.
5
Effects of injecting calcium-buffer solution on [Ca2+]i in voltage-clamped snail neurons.
Biophys J. 1996 May;70(5):2120-30. doi: 10.1016/S0006-3495(96)79778-3.
8
Intracellular calcium and its sodium-independent regulation in voltage-clamped snail neurones.
J Physiol. 1995 May 1;484 ( Pt 3)(Pt 3):533-48. doi: 10.1113/jphysiol.1995.sp020684.
10
Extrusion of calcium from a single isolated neuron of the snail Helix pomatia.
J Membr Biol. 1991 Jul;123(1):43-7. doi: 10.1007/BF01993961.

引用本文的文献

1
Generalization of the dynamic clamp concept in neurophysiology and behavior.
PLoS One. 2012;7(7):e40887. doi: 10.1371/journal.pone.0040887. Epub 2012 Jul 19.
2
Full system bifurcation analysis of endocrine bursting models.
J Theor Biol. 2010 Jun 21;264(4):1133-46. doi: 10.1016/j.jtbi.2010.03.030. Epub 2010 Mar 20.
3
Endogenous calcium buffering capacity of substantia nigral dopamine neurons.
J Neurophysiol. 2009 Oct;102(4):2326-33. doi: 10.1152/jn.00038.2009. Epub 2009 Aug 12.
4
Age-dependent changes in Ca2+ homeostasis in peripheral neurones: implications for changes in function.
Aging Cell. 2007 Jun;6(3):285-96. doi: 10.1111/j.1474-9726.2007.00298.x.
5
Apparent intracellular Mg2+ buffering in neurons of the leech Hirudo medicinalis.
Biophys J. 2001 Mar;80(3):1298-310. doi: 10.1016/S0006-3495(01)76104-8.
6
Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells.
J Physiol. 1999 Jul 15;518 ( Pt 2)(Pt 2):463-7. doi: 10.1111/j.1469-7793.1999.0463p.x.
7
Relationship between intracellular calcium and its muffling measured by calcium iontophoresis in snail neurones.
J Physiol. 1996 Mar 15;491 ( Pt 3)(Pt 3):621-33. doi: 10.1113/jphysiol.1996.sp021244.
8
Calcium buffering in bursting Helix pacemaker neurons.
Pflugers Arch. 1993 Dec;425(5-6):499-505. doi: 10.1007/BF00374877.

本文引用的文献

4
Inositol phosphates and cell signalling.
Nature. 1989 Sep 21;341(6239):197-205. doi: 10.1038/341197a0.
5
The EF-hand family of calcium-modulated proteins.
Trends Neurosci. 1989 Nov;12(11):462-7. doi: 10.1016/0166-2236(89)90097-0.
6
Inositol trisphosphate releases intracellularly stored calcium and modulates ion channels in molluscan neurons.
J Neurosci. 1988 Jul;8(7):2544-55. doi: 10.1523/JNEUROSCI.08-07-02544.1988.
7
The intracellular distribution of calcium.
Trends Neurosci. 1988 Oct;11(10):449-52. doi: 10.1016/0166-2236(88)90197-x.
8
Calbindin D-28k and parvalbumin in the rat nervous system.
Neuroscience. 1990;35(2):375-475. doi: 10.1016/0306-4522(90)90091-h.
9
Flash photolysis studies of excitation-contraction coupling, regulation, and contraction in smooth muscle.
Annu Rev Physiol. 1990;52:857-74. doi: 10.1146/annurev.ph.52.030190.004233.
10
Free calcium transients and oscillations in nerve cells.
Exp Brain Res. 1991;83(2):459-64. doi: 10.1007/BF00231173.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验