Huet S, Chapey C, Robert J
Fondation Bergonié, Bordeaux, France.
Eur J Cancer. 1993;29A(10):1377-83. doi: 10.1016/0959-8049(93)90005-z.
We have compared the properties of the novel multidrug resistance modulator, S9788, to a panel of 11 well-known modulators in a model of rat glioblastoma cells resistant to doxorubicin and displaying a P-glycoprotein-mediated multidrug-resistance phenotype complemented by a mechanism of intracellular drug tolerance not yet identified (Br J Cancer 1992, 65, 538-544). S9788, like most modulators, was able to completely restore drug accumulation in the resistant line to the level obtained in the sensitive cells. This was obtained with 10 mumol/l of modulator, which is slightly higher than required for cyclosporine A (3 mumol/l) verapamil and nicardipine (6 mumol/l), but lower than for amiodarone, trifluoperazine and dipyridamole (20 mumol/l), tamoxifen and diltiazem (40 mumol/l), quinine, quinidine and nifedipine (> 100 mumol/l). Complete restoration of drug cytotoxicity was, however, obtained only with amiodarone, and a residual resistance factor of 4 could not be overcome by cyclosporine A or S9788, while other modulators gave residual resistance factors of 5-20 (trifluoperazine, tamoxifen, verapamil, quinine, nicardipine, dipyridamole) or even higher (diltiazem, quinidine, nifedipine). When studying doxorubicin accumulation obtained for an exposure to the IC50 of this drug, it appeared that some modulators were able to decrease this "intracellular IC50" independently of their efficiency in resistance reversal (cyclosporine A, S9788, amiodarone, trifluoperazine, quinine, tamoxifen), thus reversing intracellular drug tolerance, whereas other modulators could not reduce this parameter (verapamil, nicardipine, dipyridamole, diltiazem, quinidine). It is suggested that drugs of the first group could be able to segregate doxorubicin in subcellular compartments from which it could not reach its nuclear targets.
我们在对阿霉素耐药且呈现P-糖蛋白介导的多药耐药表型(伴有尚未明确的细胞内药物耐受机制)的大鼠胶质母细胞瘤细胞模型中,将新型多药耐药调节剂S9788的特性与一组11种知名调节剂进行了比较(《英国癌症杂志》1992年,65卷,538 - 544页)。与大多数调节剂一样,S9788能够将耐药细胞系中的药物蓄积完全恢复到敏感细胞中的水平。这一效果在10 μmol/L的调节剂作用下得以实现,该浓度略高于环孢素A(3 μmol/L)、维拉帕米和尼卡地平(6 μmol/L)所需的浓度,但低于胺碘酮、三氟拉嗪和双嘧达莫(20 μmol/L)、他莫昔芬和地尔硫䓬(40 μmol/L)、奎宁、奎尼丁和硝苯地平(>100 μmol/L)所需的浓度。然而,只有胺碘酮能使药物细胞毒性完全恢复,环孢素A或S9788无法克服4的残余耐药因子,而其他调节剂的残余耐药因子为5 - 20(三氟拉嗪、他莫昔芬、维拉帕米、奎宁、尼卡地平、双嘧达莫)甚至更高(地尔硫䓬、奎尼丁、硝苯地平)。在研究暴露于该药物IC50时获得的阿霉素蓄积情况时,发现一些调节剂能够降低这种“细胞内IC50”,而与其耐药逆转效率无关(环孢素A、S9788、胺碘酮、三氟拉嗪、奎宁、他莫昔芬),从而逆转细胞内药物耐受,而其他调节剂则无法降低这一参数(维拉帕米、尼卡地平、双嘧达莫、地尔硫䓬、奎尼丁)。有人认为,第一组药物可能能够将阿霉素分隔在亚细胞区室中,使其无法到达其核靶点。