Suppr超能文献

生长压力可驱动早期雏鸡晶状体的几何形态。

Growth pressure can drive early chick lens geometries.

作者信息

Hendrix R, Madras N, Johnson R

机构信息

Department of Developmental and Structural Biology, Public Health Research Institute, New York, New York 10016.

出版信息

Dev Dyn. 1993 Mar;196(3):153-64. doi: 10.1002/aja.1001960302.

Abstract

Over a number of morphological stages during chick lens morphogenesis, a flat plate of cuboidal ectodermal cells infolds to form a deep cup of tall, pyramidal lenticular cells. This invagination process is accompanied by asynchronous cellular multiplication over a basal region constrained by an adhesive extracellular matrix. A lens placode is formed as the cells crowd into columnar "palisades." A lens cup forms as the cells pyramidalize owing to basal nuclear movements. Invagination ends when the opening into the lens cup is closed to form a lens vesicle. In this paper, equations are developed that provide a quantitative, mathematical formulation of an earlier theory that explains this invagination as a growth driven process. The equations take into account the lens cell cycle, the extracellular matrix, and nuclear migratory behaviors. Based on the equations, geometries simulating the morphological stages and the cell cycle phases are generated for the 1st day of lens development. The mathematical formulation of lens invagination helps demonstrate how growth pressure alone can be the primary driving force for tissue folding. In this view, recruitment occurs before the shape changes; and cell-autonomous mechanisms of invagination, involving the cytoskeleton or differential adhesion alone, offer inadequate explanations of these changes.

摘要

在鸡晶状体形态发生的多个形态学阶段中,一层扁平的立方外胚层细胞向内折叠,形成一个由高的、金字塔形晶状体细胞组成的深杯状结构。这种内陷过程伴随着在由粘性细胞外基质限制的基底区域上的异步细胞增殖。当细胞聚集形成柱状“栅栏”时,晶状体原基形成。由于基底核运动,细胞呈金字塔形,从而形成晶状体杯。当晶状体杯的开口关闭形成晶状体泡时,内陷结束。在本文中,我们建立了一些方程,这些方程为一个早期理论提供了定量的数学表述,该理论将这种内陷解释为一个生长驱动的过程。这些方程考虑了晶状体细胞周期、细胞外基质和核迁移行为。基于这些方程,生成了模拟晶状体发育第一天形态学阶段和细胞周期阶段的几何模型。晶状体内陷的数学表述有助于证明仅生长压力如何能够成为组织折叠的主要驱动力。按照这种观点,募集发生在形状改变之前;而仅涉及细胞骨架或差异粘附的内陷细胞自主机制,对这些变化的解释并不充分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验