Ludmann S A, Schwandt A, Kong X, Bricker C S, Pennock D G
Department of Zoology, Miami University, Oxford, Ohio 45056.
J Eukaryot Microbiol. 1993 Sep-Oct;40(5):650-60. doi: 10.1111/j.1550-7408.1993.tb06123.x.
Tetrahymena thermophila mutants homozygous for the oad mutation become nonmotile when grown at the restrictive temperature, and axonemes isolated from nonmotile mutants lack approximately 90% of their outer dynein arms. Electrophoretic analyses of axonemes isolated from nonmotile mutants (oad axonemes) indicate they contain significantly fewer of the 22 S dynein heavy chains that axonemes isolated from wild-type cells (wild-type axonemes) contain. The 22 S dynein heavy chains that remain in axonemes isolated from nonmotile, oad mutants are assembled into 22 S dynein particles that exhibit wild-type levels of ATPase activity. Two-dimensional gel electrophoresis of oad axonemes show that they are deficient in no proteins other than those proteins thought to be components of 22 S dynein. This report is the first formal proof that outer dynein arms in Tetrahymena cilia are composed of 22 S dynein.